Data Structu res and Algorlth ms

. ;I| : ! "
H ] . }

o
cmpt231l.seanho.com/lecl ©[£ 7&05 1/43


https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

~
il
‘h

cm gtzsl sean hocpm/ lecl 0B -



https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

CMPT231 16FA

CMPT231
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# Date Topic

1 Sep Analysis of Algorithms, Insertion Sort, Math Review,
13 Asymptotic Notation

9 Sep Divide and Conquer, Solving Recurrences,
20 Randomized Algorithms
Sep :
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4 SCt Linear-time Sort and Hash Tables
Oct : : : :

5 1" Pointers: Linked Lists, Binary Search Trees
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What you need to succeed in 231

e Explorer’s heart (self-motivated)

e Discrete math (e.g., MATH150)
» Logic, proofs

e Comfortable coding environment
= Python, C++, Java, etc.
= but not until laterin semester
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What is an algorithm?

e Precise process for solving a problem:
= [nput — Compute — Output

e Various languages for expression:
= English, pseudocode, UML diagrams, etc.

e Programming languages for implementation:
= Python, C, Java, etc.

e Focus: not toolkits but problem solving
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Algorithmic complexity

e How many machine instr to execute
= As function of input size
= |gnoring constant factors
e Depends on machine architecture
s CPUs generally sequential
= GPUs are massively parallel
e Running timeis more complex than this
= Cache / memoryvery important
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Basic machine model

e Oursimple CPU instruction set:
m Arith: +,-, %, /,<,>, F
» Data: 1oad (read), store (write), copy
= Control: 1f/else, for/while, functions
» Types: char, int, float
= Data Structures: pointers, fixed-length arrays
o but not Python list / STL vec!
e Assume each takes constant time
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Problem definition: Sorting

e Input: array of key-value pairs

= wlog, assume keysare1...n

= values (payload) can be any data
e Output: array sorted by key

= in-place: modify original array

= out-of-place: return a copy
e |nstandard libraries:

s Python:sort(),sorted()

s C++/Java: sort()
= Howdo they do it?
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In: _ E

=as
j=4 B /D
=5? .r a4l

insertion_sort(A, n):
iNelr 3} = #Z e
key = A[J]
1 =3 -1
while 1 > 0 and A[i] > key:
A[I+t1|R=FA[1]
1=1-1
A[i+1l] = key

Lo A0
"

Out: A B
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Proof of correctness

e Loop invariant:
e Property thatis true before, during, and after loop
e Forinsertion sort: at each iteration of loop,

m partofarrayA[1 .. Jj-1]isinsorted order

insertion_sort(A, n):
for j = 2 to n:

key = A[]]

i=3 -1

while 1 > 0 and A[1] > key:
A[i+1] = A[i]
1i=1-1

A[i+1] = key
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Complexity analysis

Let ¢; be the number of times the loop condition is
checked in the inner “while” loop:

insertion_sort(A, n):
for j =2 ton: #cO * n

key = A[j] # c1 * (n-1)

1=3] -1#<c2* (n-1)

while i > 0 and A[i] > key: # ¢c3 * sum (t_j)
A[i+1] = A[1] # c4 * sum (t_j - 1)
1 =1-1#¢c5 * sum (t_3 - 1)

A[i+1] = key # c6 * (n-1)

n
Summation notation: th —ty +1t3+ ...+ 1,
2
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Best vs. worst case

e Bestcaseisifinputis pre-sorted:
= Still need to scan to verify sorted,
= But inner while loop only has 1 iteration: t; = 1
s Total complexity: T(n)=an+b,forsomea,b
= Linearinn
e Worst case: input isin reverse order!
= [nner “while” loop always max iterations: t; = j
» Calculate total complexity T(n):
» Pickalineininnerloop,e.g., line5:A[i+1] =
A[1]
= Complexity of other lines similar
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Worst case complexity

e Total complexity for line 5, worst-case:
csY (ti—1)=cs)y (j—1)
2 2

02 = (S (2)s

= Quadraticinn

e Average case: inputisrandom,t; = % on average

» Still quadratic (only changes by a constant
factor)
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Theta (0©) notation

e Insertion sort, line 5: (%4)77,2 — (%)n

e Constantscy, cy, ... may vary for different computers
» As n gets big, constants become irrelevant
= Even the nterm is dominated by the n? term
e Complexity of insertion sort is on order of n?
= Notation: T'(n) = ©(n?) (“theta”)
e ©(1) means an algorithm runs in constant time
® j.e.,does not depend on size of input
e We’ll defineV more precisely later today
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Logic notation

e —A(or!A): “notA”

m e.g.,letA=“itisTue®:then —A="*itisnot Tue“
e A= B:“implies”, “if A, then B”

= e.g., let B=*meatloaf®:

= then A = B ="“if Tue, then meatloaf”
e A< B:ifand only if (“iff):

= equivalence: (A = B)and (B = A)
e John 14:15: “If you love me, keep my commands*
e V21: “Whoever keeps my commands loves me*“
e v24: “He who does not love me will not obey my

teaching®
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Logic notation: V and 3

e V: “forall
n e.g., “Vday: meal(day) = meatloaf”
= “For all days, the meal on that day is meatloaf”
e d: “there exists“ (not necessarily unique)
n e.g., “dday: meal(day) = meatloaf”
s “There exists a day on which the meal is
meatloaf*
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Logic: contrapos and converse

e Contrapositiveof “A = B”is -B= - A
» Equivalent to original statement
= “If Tue, then meatloaf” &
“if not meatloaf, then not Tue®
e Converseof “A=B”is“-A4A = -B“
= Not equivalent to original statement!
= “if not Tue, then not meatloaf”
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Monotonicity

e f(x) is monotone increasing iff: x <y = f(x) = f(y)
= Also called “non-decreasing”
= Can beflat
o f(x) is strictly increasing iff: x <y = f(x) < f(y)
= note inequality is strict
e “amod n“isthe remainder of a when divided by n
" e.g.,17mod5=2(in Python:17 % 5)
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Limits
e Formal definitions of limits involve V and 3
e lim f(z) = b: “limit of f(x) as x goes to a“

» Vz>0,dy>0:|x-a|<y = |f(x)-b| <z
= When xis “close” to a, then f(x) is “close” to b
e lim f(n) = b: “limit of f(n) as n goes to infinity”:

" Vz>0,dn0:n>n0 = |f(n)-b| <z
= Whennis “big”, f(n) is “close” to b
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Iterated functions (recursion)

e 7@ (z): function f, applied i times to x: f(f(f(... f(x) ...)))
= Notthe same as f(z) = (f(z))’

e e.g.,10g®(1000) = log(log(1000)) = log(3) = 0.477
= Butlog?(1000) = (log(1000))* = 3% =9

e By convention, 1% (z) = z (apply f zero times)
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Iterated log: log*(n)

® log"(n) = min (z > 0:log'? (n) < 1)

e #timeslog needs to be applied to n until the result is
<1
e e.g.,letlg=1log,:
» thenlg*(16) = 3, because
= lg(lg(lg(16)))=1g(lg(4))=1g(2)=1
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The Golden ratio ¢

e ¢ isthe solutiontothe equationz? = z 4 1

1+ /5
o= 2\/_
» Actually, two solutions: ¢ and its conjugate, ¢
- (l) = , and q_ﬁ ~

e Alsoshows up all over nature
» Dimensions of Nautilus seashells, spiral
galaxies, etc.
m Aspect ratio in architecture, e.g., Parthenon
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Proving asymptotic growth

o (p.52#3.1-2) ¥ a,b >0, prove: (n + a)’ € ©(n?)

e From definition: we need to find ng, ¢;, ¢, such that
b

Vn > ng:an < (n+a)’ < en
e i.e, find constants so we can sandwich (n + a)°® in
between two multiples of n°
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Prove: (n+a) b € O(nb)

e Observethat n+a = n/2,aslongasn>2|a|
= Also, n+a = 2n, as longas n> |3
» Hence, n+ais sandwiched by n/2 and 2n (if n >
2|al):
o n/2<nta <2n
e Raiseto the b power (z° is monotoneif x>1, b >0)

= Thus, (g)b < (n+a)’ < (2n)° (forn>2|al)

e Soweselectny = 2|al,c; =277, ¢y =2°
= This proves the Theta bound.
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Asymptotic shorthand

e V(g)is a class of functions
= But for convenience, some short-hand notation:
e WhenV (et al) are on the right side of =:
= |t means “there exists“ f € ©(g)
" e.g.,2n’ + 3n = @(nz)
e WhenV (et al) are on the left side of =:
= [t means “forall f € ©(g)
" e.g.,4n’ + O(nlog(n)) = O(n?)
= True for any function in ©(nlog(n))
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Asymptotic domination: o, w

o “Little 0o“: like a strict less than inequality: f € o(g) iff
" Vc>0dn0:Vn>n0,0 < f(n)<cg(n)
® j.e., thelimitof f(n)/g(n) > 0asn— oo

o “Little omega“: like a strict greater than: f € w(g) iff
8 Vc>0dn0:Vn>n0,0 <cg(n)<f(n)
® j.e.,thelimitoff(n)/g(n) > c0asn— oo
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Examples of 0 and w

2

o |i . ,1.999 2 b 2
Little 0: n € o(n?), and log () € o(n?)
2
| n 2
but 0T ¢ o(n®)

o Little omega: n**" € w(n?) and n’log(n) = w(n’)
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Useful math identities

e All logs are the same up to a constant factor:
1
" log,(n) = logy, (1
1) = (oo oy ) om(
= So we often use Ig =1log, for convenience
* O(1) C o(log(n)) C o(n) C o(n?) C o(p")
= Forany constantp>1

,nb

e Infact,Va>1,b: lim — =0

n—oo Q"
= Hence, n® € o(a™)
= "”Exponentials dominate polynomials

N*k
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Stirling’s approximation

e Factorial: n! =n(n-1)(n-2)...(2)(1)

= Number of permutations of n distinct objects
n 1

o Stirling’s approx:n! = \/%(—)n (1 + @(—))

e n
e Hence,log(n!) € ©(nlog(n))
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Example asymptotic proof

o (p.62 #3-3): Prove: (logn)! € w(n®)

e Approach: take log of both sides (log is monotone)

o Leftside: use Stirling:n! = \/27m(2)n (1 + @(l))

€ n

= Solog(n!)<=V(nlog(n))
= Now substitute log(n) for n, using monotonicity
of log:
o Solog((logn)!') €V ((logn)log(logn))
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Prove: (log n)! = w(nA3)

e ...s0:log((logn)!) €V ((logn)log(logn))
e Rightside:log(n®) = 3logn
» This is close to the left side, with 3 instead of log(
log n)
= But we only need an w bound, and log(logn ) €
w(3)
e Combining:log((logn)!) € ©((logn)log(logn))
= = w((logn)3) = w(log(n®))
e So by monotonicity, (logn)! € w(n’)
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