Data Structu res and Algorlth ms

. ;I| : ! "
H] . }

o
cmpt231l.seanho.com/lecl ©[£ 7&05 1/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

~
il
‘h

cm gtzsl sean hocpm/ lecl 0B -

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

CMPT231 16FA

CMPT231

Data Structures and Algorithms

Schedule

Date Topic

1 Sep Analysis of Algorithms, Insertion Sort, Math Review,
13 Asymptotic Notation

9 Sep Divide and Conquer, Solving Recurrences,
20 Randomized Algorithms
Sep :

3 57 Heaps/Queues, Quicksort

4 SCt Linear-time Sort and Hash Tables
Oct : : : :

5 1" Pointers: Linked Lists, Binary Search Trees
Ot

MYCOURSES

Text

ch 1-

ch 4-

ch 6-

ch 8,

1

ch 10,
12

RESOURCES v PROF. HO

HW
Due

HW1:
9/22

HW2:
9/29

HW3:
10/6

HW4:
10/13

HW5S®

https://cmpt231-16fa.github.io/lec1
https://cmpt231-16fa.github.io/lec2
https://cmpt231-16fa.github.io/hw1
https://cmpt231-16fa.github.io/lec3
https://cmpt231-16fa.github.io/hw2
https://cmpt231-16fa.github.io/lec4
https://cmpt231-16fa.github.io/hw3
https://cmpt231-16fa.github.io/lec5
https://cmpt231-16fa.github.io/hw4
https://cmpt231-16fa.github.io/lec6
https://cmpt231-16fa.github.io/hw5
http://cmpt231-16fa.github.io/
https://courses.mytwu.ca/course/view.php?id=33225
javascript:void(0)
http://seanho.com/
http://cmpt231-16fa.github.io/
https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

What you need to succeed in 231

e Explorer’s heart (self-motivated)

e Discrete math (e.g., MATH150)
» Logic, proofs

e Comfortable coding environment
= Python, C++, Java, etc.
= but not until laterin semester

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

aﬁt‘\gont mlc 'ﬂi)f-jl-s ?
Rl Insertlonsort
o Dlscrete math reV|eW

5/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

What is an algorithm?

e Precise process for solving a problem:
= [nput — Compute — Output

e Various languages for expression:
= English, pseudocode, UML diagrams, etc.

e Programming languages for implementation:
= Python, C, Java, etc.

e Focus: not toolkits but problem solving

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Algorithmic complexity

e How many machine instr to execute
= As function of input size
= |gnoring constant factors
e Depends on machine architecture
s CPUs generally sequential
= GPUs are massively parallel
e Running timeis more complex than this
= Cache / memoryvery important

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Basic machine model

e Oursimple CPU instruction set:
m Arith: +,-, %, /,<,>, F
» Data: 1oad (read), store (write), copy
= Control: 1f/else, for/while, functions
» Types: char, int, float
= Data Structures: pointers, fixed-length arrays
o but not Python list / STL vec!
e Assume each takes constant time

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Problem definition: Sorting

e Input: array of key-value pairs

= wlog, assume keysare1...n

= values (payload) can be any data
e Output: array sorted by key

= in-place: modify original array

= out-of-place: return a copy
e |nstandard libraries:

s Python:sort(),sorted()

s C++/Java: sort()
= Howdo they do it?

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

= |nsertion sort
o Dlscrete math rewew

? g‘&' nc‘.“ﬂm ?

10/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

In: _ E

=as
j=4 B /D
=5? .r a4l

insertion_sort(A, n):
iNelr 3} = #Z e
key = A[J]
1 =3 -1
while 1 > 0 and A[i] > key:
A[I+t1|R=FA[1]
1=1-1
A[i+1l] = key

Lo A0
"

Out: A B

cmpt231.seanho.com/lecl Q[A

O OO OO

11/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Proof of correctness

e Loop invariant:
e Property thatis true before, during, and after loop
e Forinsertion sort: at each iteration of loop,

m partofarrayA[1 .. Jj-1]isinsorted order

insertion_sort(A, n):
for j = 2 to n:

key = A[]]

i=3 -1

while 1 > 0 and A[1] > key:
A[i+1] = A[i]
1i=1-1

A[i+1] = key

cmpt231l.seanho.com/lecl O 12 /43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Complexity analysis

Let ¢; be the number of times the loop condition is
checked in the inner “while” loop:

insertion_sort(A, n):
for j =2 ton: #cO * n

key = A[j] # c1 * (n-1)

1=3] -1#<c2* (n-1)

while i > 0 and A[i] > key: # ¢c3 * sum (t_j)
A[i+1] = A[1] # c4 * sum (t_j - 1)
1 =1-1#¢c5 * sum (t_3 - 1)

A[i+1] = key # c6 * (n-1)

n
Summation notation: th —ty +1t3+ ...+ 1,
2

cmpt231l.seanho.com/lecl O 13/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Best vs. worst case

e Bestcaseisifinputis pre-sorted:
= Still need to scan to verify sorted,
= But inner while loop only has 1 iteration: t; = 1
s Total complexity: T(n)=an+b,forsomea,b
= Linearinn
e Worst case: input isin reverse order!
= [nner “while” loop always max iterations: t; = j
» Calculate total complexity T(n):
» Pickalineininnerloop,e.g., line5:A[i+1] =
A[1]
= Complexity of other lines similar

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Worst case complexity

e Total complexity for line 5, worst-case:
csY (ti—1)=cs)y (j—1)
2 2

02 = (S (2)s

= Quadraticinn

e Average case: inputisrandom,t; = % on average

» Still quadratic (only changes by a constant
factor)

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Theta (0©) notation

e Insertion sort, line 5: (%4)77,2 — (%)n

e Constantscy, cy, ... may vary for different computers
» As n gets big, constants become irrelevant
= Even the nterm is dominated by the n? term
e Complexity of insertion sort is on order of n?
= Notation: T'(n) = ©(n?) (“theta”)
e ©(1) means an algorithm runs in constant time
® j.e.,does not depend on size of input
e We’ll defineV more precisely later today

cmpt231l.seanho.com/lecl Q[Q 16/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

| Vi g

¥ ' \ " ‘-1| . a |
:I L 't L -
h Jﬁ ‘ [-
¥ Ll

! | W
TR A
‘2‘& Ty k@ g_.% 111 (S ﬂm *

= Insertlon sort

o Dlscrete math rewew

17/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Logic notation

e —A(or!A): “notA”

m e.g.,letA=“itisTue®:then —A="*itisnot Tue“
e A= B:“implies”, “if A, then B”

= e.g., let B=*meatloaf®:

= then A = B ="“if Tue, then meatloaf”
e A< B:ifand only if (“iff):

= equivalence: (A = B)and (B = A)
e John 14:15: “If you love me, keep my commands*
e V21: “Whoever keeps my commands loves me*“
e v24: “He who does not love me will not obey my

teaching®

cmpt231.seanho.com/lec1 Q[

18/4

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Logic notation: V and 3

e V: “forall
n e.g., “Vday: meal(day) = meatloaf”
= “For all days, the meal on that day is meatloaf”
e d: “there exists“ (not necessarily unique)
n e.g., “dday: meal(day) = meatloaf”
s “There exists a day on which the meal is
meatloaf*

cmpt231.seanho.com/lec1 Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Logic: contrapos and converse

e Contrapositiveof “A = B”is -B= - A
» Equivalent to original statement
= “If Tue, then meatloaf” &
“if not meatloaf, then not Tue®
e Converseof “A=B”is“-A4A = -B“
= Not equivalent to original statement!
= “if not Tue, then not meatloaf”

cmpt231l.seanho.com/lecl O 20/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

| Vi g

¥ ' \ " ‘-1| . a |
:I L 't L -
h Jﬁ ‘ [-
¥ Ll

! | W
TR A
‘2‘& Ty k@ g_.% 111 (S ﬂm *

= Insertlon sort

o Dlscrete math rewew

21/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Monotonicity

e f(x) is monotone increasing iff: x <y = f(x) = f(y)
= Also called “non-decreasing”
= Can beflat
o f(x) is strictly increasing iff: x <y = f(x) < f(y)
= note inequality is strict
e “amod n“isthe remainder of a when divided by n
" e.g.,17mod5=2(in Python:17 % 5)

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Limits
e Formal definitions of limits involve V and 3
e lim f(z) = b: “limit of f(x) as x goes to a“

» Vz>0,dy>0:|x-a|<y = |f(x)-b| <z
= When xis “close” to a, then f(x) is “close” to b
e lim f(n) = b: “limit of f(n) as n goes to infinity”:

" Vz>0,dn0:n>n0 = |f(n)-b| <z
= Whennis “big”, f(n) is “close” to b

cmpt231.seanho.com/lec1 Q[

23/4

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Iterated functions (recursion)

e 7@ (z): function f, applied i times to x: f(f(f(... f(x) ...)))
= Notthe same as f(z) = (f(z))’

e e.g.,10g®(1000) = log(log(1000)) = log(3) = 0.477
= Butlog?(1000) = (log(1000))* = 3% =9

e By convention, 1% (z) = z (apply f zero times)

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Iterated log: log*(n)

® log"(n) = min (z > 0:log'? (n) < 1)

e #timeslog needs to be applied to n until the result is
<1
e e.g.,letlg=1log,:
» thenlg*(16) = 3, because
= lg(lg(lg(16)))=1g(lg(4))=1g(2)=1

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

| Vi g

A ,,,,h:wf? 3

af g

AT g ;g g_,,gk micanalysis g‘

hat) Insertlon sort
o Dlscrete math rewew

26/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

L”Mﬂ AP
W}Eﬁ){!b Flbonacc:| number |s

AT \ | ! 500 - : _"" 7 v, 2 e ~ 1 e .+
! '5" !I ' E}‘{E—'; &r(\l.” o

e .V)

3 5,,8,';13 2‘21

|rals on sunflowers pmecones @[[:;,,

C * gr —-v- ﬂ‘r B

l ¥ !

{1
{f

seanho.com/lecl

https://www.youtube.com/watch?v=ahXIMUkSXX0
https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

The Golden ratio ¢

e ¢ isthe solutiontothe equationz? = z 4 1

1+ /5
o= 2\/_
» Actually, two solutions: ¢ and its conjugate, ¢
- (l) = , and q_ﬁ ~

e Alsoshows up all over nature
» Dimensions of Nautilus seashells, spiral
galaxies, etc.
m Aspect ratio in architecture, e.g., Parthenon

cmpt231.seanho.com/lec1 Q[A

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

£

Flbonacm + goldé*l;*ra o . .

. - -+
»i It":'i"'l' - e 1
a ._ - “.‘,_ ;

. Tm]S: F, ";,~_
; ° i.e., F|bonaCC| grows exponentlally'
L | ; "- -

cmpt23l.seanho.com/lecl ©[8 : . 29/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

| Vi g
1
T ,' -..’ x

A
(X | o
. ¥
By e OR)

Fiz, g g_',gk micanalysis i‘;!

= |nsertion sort
o Dlscrete math rewew

« Fibonace equente'and golden ratio

e Asympto tlc«'notatlonlle 0,0

30/43

cmpt23l.seanho.com/lecl OB

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

growth:(0,0; 0

Benavionriin the imita(/an) f(n)
Define'V as'class of i) = W)

=l @il @2, ok \/) ﬁ&@@@ﬂ@ﬁ)é) = 2
flisksandwiched&b g?%n)

cEo(n@andico ()
ony upperboundaf(n)IEi0 (5 (1)1 iff

l@, AOAY =600, D) < @2 gli)
€8
ﬁﬂ)))gmmﬂm

BlgOmega
‘T;'hm <ofotherexamples?

|
.

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Proving asymptotic growth

o (p.52#3.1-2) ¥ a,b >0, prove: (n + a)’ € ©(n?)

e From definition: we need to find ng, ¢;, ¢, such that
b

Vn > ng:an < (n+a)’ < en
e i.e, find constants so we can sandwich (n + a)°® in
between two multiples of n°

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Prove: (n+a) b € O(nb)

e Observethat n+a = n/2,aslongasn>2|a|
= Also, n+a = 2n, as longas n> |3
» Hence, n+ais sandwiched by n/2 and 2n (if n >
2|al):
o n/2<nta <2n
e Raiseto the b power (z° is monotoneif x>1, b >0)

= Thus, (g)b < (n+a)’ < (2n)° (forn>2|al)

e Soweselectny = 2|al,c; =277, ¢y =2°
= This proves the Theta bound.

cmpt231l.seanho.com/lecl O 33/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Asymptotic shorthand

e V(g)is a class of functions
= But for convenience, some short-hand notation:
e WhenV (et al) are on the right side of =:
= |t means “there exists“ f € ©(g)
" e.g.,2n’ + 3n = @(nz)
e WhenV (et al) are on the left side of =:
= [t means “forall f € ©(g)
" e.g.,4n’ + O(nlog(n)) = O(n?)
= True for any function in ©(nlog(n))

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Asymptotic domination: o, w

o “Little 0o“: like a strict less than inequality: f € o(g) iff
" Vc>0dn0:Vn>n0,0 < f(n)<cg(n)
® j.e., thelimitof f(n)/g(n) > 0asn— oo

o “Little omega“: like a strict greater than: f € w(g) iff
8 Vc>0dn0:Vn>n0,0 <cg(n)<f(n)
® j.e.,thelimitoff(n)/g(n) > c0asn— oo

cmpt231.seanho.com/lec1 Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Examples of 0 and w

2

o |i . ,1.999 2 b 2
Little 0: n € o(n?), and log () € o(n?)
2
| n 2
but 0T ¢ o(n®)

o Little omega: n**" € w(n?) and n’log(n) = w(n’)

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Useful math identities

e All logs are the same up to a constant factor:
1
" log,(n) = logy, (1
1) = (oo oy) om(
= So we often use Ig =1log, for convenience
* O(1) C o(log(n)) C o(n) C o(n?) C o(p")
= Forany constantp>1

,nb

e Infact,Va>1,b: lim — =0

n—oo Q"
= Hence, n® € o(a™)
= "”Exponentials dominate polynomials

N*k

cmpt231l.seanho.com/lecl Q[Q 37/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Stirling’s approximation

e Factorial: n! =n(n-1)(n-2)...(2)(1)

= Number of permutations of n distinct objects
n 1

o Stirling’s approx:n! = \/%(—)n (1 + @(—))

e n
e Hence,log(n!) € ©(nlog(n))

cmpt231.seanho.com/lecl Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

| Vi g
1
T ,' -..’ x

A
(X | o
. ¥
By e OR)

Fiz, g g_',gk micanalysis i‘;!

= |nsertion sort
o Dlscrete math rewew

39/43

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Example asymptotic proof

o (p.62 #3-3): Prove: (logn)! € w(n®)

e Approach: take log of both sides (log is monotone)

o Leftside: use Stirling:n! = \/27m(2)n (1 + @(l))

€ n

= Solog(n!)<=V(nlog(n))
= Now substitute log(n) for n, using monotonicity
of log:
o Solog((logn)!') €V ((logn)log(logn))

cmpt231.seanho.com/lec1 Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

Prove: (log n)! = w(nA3)

e ...s0:log((logn)!) €V ((logn)log(logn))
e Rightside:log(n®) = 3logn
» This is close to the left side, with 3 instead of log(
log n)
= But we only need an w bound, and log(logn) €
w(3)
e Combining:log((logn)!) € ©((logn)log(logn))
= = w((logn)3) = w(log(n®))
e So by monotonicity, (logn)! € w(n’)

cmpt231.seanho.com/lec1 Q[

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

a‘.%wc T
= Insertlon sort

o Dlscrete math review
x DR .

o roofsﬁ

42143

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

+

cmpt231.seanho.com/lecl ©[£

https://github.com/cmpt231-16fa/lec1
http://localhost:9000/lec1.pdf

