

Data Structures and Algorithms

Psalm 127:1-2 (NIV)

Unless the Lord builds the house, the builders labor in vain.
Unless the Lord watches over the city, the guards stand watch in vain.

In vain you rise early and stay up late, toiling for food to eat -
for he grants sleep to those heloves.

CMPT231

Data Structures and Algorithms

Schedule

What you need to succeed in 231

- Explorer's heart (self-motivated)
- Discrete math (e.g., MATH150)
- Logic, proofs
- Comfortable coding environment
- Python, C++, Java, etc.
- but not until later in semester

Outtine for today

Q Algorithmic analysis

- Insertion sort
- Discrete math review
- Logic and proofs
- Monotonicity, limits, iterated functions
- Fibonacci sequence and golden ratio
- Asymptotic notation: V, O, L, O, ω
- Proving asymptotic bounds

What is an algorithm?

- Precise process for solving a problem:
- Input \rightarrow Compute \rightarrow Output
- Various languages for expression:
- English, pseudocode, UML diagrams, etc.
- Programming languages for implementation:
- Python, C, Java, etc.
- Focus: not toolkits but problem solving

Algorithmic complexity

- How many machine instr to execute
- As function of input size
- Ignoring constant factors
- Depends on machine architecture
- CPUs generally sequential
- GPUs are massively parallel
- Running time is more complex than this
- Cache / memory very important

Basic machine model

- Our simple CPU instruction set:
- Arith: +, -, ${ }^{*}, /,<,>, \neq$
- Data: load (read), store (write), copy
- Control: if/else, for/while, functions
- Types: char, int, float
- Data Structures: pointers, fixed-length arrays - but not Python list / STL vec!
- Assume each takes constant time

Problem definition: Sorting

- Input: array of key-value pairs
- wlog, assume keys are 1 ... n
- values (payload) can be any data
- Output: array sorted by key
- in-place: modify original array
- out-of-place: return a copy
- In standard libraries:
- Python: sort(), sorted()
- C++/Java: sort ()
- How do they do it?

Outtine for today

2.Algorithmic analysis

- Insertion sort
- Discrete math review
- Logic and proofs
- Monotonicity, limits, iterated functions
- Fibonacci sequence and golden ratio
- Asymptotic notation: V, O, L, o, ω
- Proving asymptotic bounds

Insertionsort: hand offcards

```
insertion_sort(A, n):
    for j = 2 to n:
        key = A[j]
    i = j - 1
    while i > 0 and A[i] > key:
        A[i+1] = A[i]
        i = i - 1
        A[i+1] = key
```

In:	E	B	D	F	A	C
$j=3$	B	E	D	F	A	C
$j=4$	B	D	E	F	A	C
$j=5$	B	D	E	F	A	C
$j=6$	A	B	D	E	F	C
Out:	A	B	C	D	E	F

Proof of correctness

- Loop invariant:
- Property that is true before, during, and after loop
- For insertion sort: at each iteration of loop,
- part of array A [1 . . j-1] is in sorted order

```
insertion_sort(A, n):
    for j = 2 to n:
        key = A[j]
        i = j - 1
        while i > 0 and A[i] > key:
            A[i+1] = A[i]
            i = i - 1
    A[i+1] = key
```


Complexity analysis

Let t_{j} be the number of times the loop condition is checked in the inner "while" loop:

```
insertion_sort(A, n):
    for j = 2 to n: # c0 * n
        key = A[j] # c1 * (n-1)
    i = j - 1 # c2 * (n-1)
    while i > 0 and A[i] > key: # c3 * sum (t_j)
        A[i+1] = A[i] # c4 * sum (t_j - 1)
        i = i - 1 # c5 * sum (t_j - 1)
    A[i+1] = key # c6 * (n-1)
```

Summation notation: $\sum_{2}^{n} t_{j}=t_{2}+t_{3}+\ldots+t_{n}$

Best vs. worst case

- Best case is if input is pre-sorted:
- Still need to scan to verify sorted,
- But inner while loop only has 1 iteration: $t_{j}=1$
- Total complexity: $T(n)=a n+b$, for some a, b
- Linear in n
- Worst case: input is in reverse order!
- Inner "while" loop always max iterations: $t_{j}=j$
- Calculate total complexity T(n):
- Pick a line in inner loop, e.g., line 5: A [i+1] = A[i]
- Complexity of other lines similar

Worst case complexity

- Total complexity for line 5, worst-case:

$$
\begin{aligned}
& c_{4} \sum_{2}^{n}\left(t_{j}-1\right)=c_{4} \sum_{2}^{n}(j-1) \\
& =c_{4}(n-1) \frac{n}{2}=\left(\frac{c_{4}}{2}\right) n^{2}-\left(\frac{c_{4}}{2}\right) n
\end{aligned}
$$

- Quadratic in n
- Average case: input is random, $t_{j}=\frac{j}{2}$ on average
- Still quadratic (only changes by a constant factor)

Theta (0) notation

- Insertion sort, line 5: $\left(\frac{c_{4}}{2}\right) n^{2}-\left(\frac{c_{4}}{2}\right) n$
- Constants c_{1}, c_{2}, \ldots may vary for different computers
- As n gets big, constants become irrelevant
- Even the n term is dominated by the n^{2} term
- Complexity of insertion sort is on order of n^{2}
- Notation: $T(n)=\Theta\left(n^{2}\right)$ ("theta")
- $\Theta(1)$ means an algorithm runs in constant time
- i.e., does not depend on size of input
- We'll define V more precisely later today

Outtine for today

QAlgorithmic analysis

- Insertion sort
- Discrete math review
- Logic and proofs
- Monotonicity, limits, iterated functions
- Fibonacci sequence and golden ratio
- Asymptotic notation: V, O, L, o, ω
- Proving asymptotic bounds

Logic notation

- $\neg A$ (or ! A): "not A "
- e.g., let $\mathrm{A}=$ "it is Tue": then $\neg A=$ "it is not Tue"
- $A \Rightarrow B$: "implies", "if A, then B"
- e.g., let B = "meatloaf":
- then $\mathrm{A} \Rightarrow \mathrm{B}=$ "if Tue, then meatloaf"
- $A \Leftrightarrow B$: if and only if ("iff"):
- equivalence: $(A \Rightarrow B)$ and ($B \Rightarrow A$)
- John 14:15: "If you love me, keep my commands"
- v21: "Whoever keeps my commands loves me"
- v24: "He who does not love me will not obey my teaching"

Logic notation: \forall and \exists

- \forall : "for all",
- e.g., " \forall day: meal(day) = meatloaf"
- "For all days, the meal on that day is meatloaf"
- ヨ: "there exists" (not necessarily unique)
- e.g., " \exists day: meal(day) = meatloaf"
- "There exists a day on which the meal is meatloaf"

Logic: contrapos and converse

- Contrapositive of " $\mathrm{A} \Rightarrow \mathrm{B}$ " is $\neg B \Rightarrow \neg A$
- Equivalent to original statement
- "If Tue, then meatloaf" \Leftrightarrow "if not meatloaf, then not Tue"
- Converse of " $\mathrm{A} \Rightarrow \mathrm{B}$ " is " $\neg A \Rightarrow \neg B^{\prime \prime}$
- Not equivalent to original statement!
- "if not Tue, then not meatloaf"

Outtine for today

QAlgorithmic analysis

- Insertion sort
- Discrete math review
- Logic and proofs
- Monotonicity, limits, iterated functions
- Fibonacci sequence and golden ratio
- Asymptotic notation: V, O, L, o, ω
- Proving asymptotic bounds

Monotonicity

- $f(x)$ is monotone increasing iff: $x<y \Rightarrow f(x) \leq f(y)$
- Also called "non-decreasing"
- Can be flat
- $f(x)$ is strictly increasing iff: $x<y \Rightarrow f(x)<f(y)$
- note inequality is strict
- "a mod n " is the remainder of a when divided by n
- e.g., 17 mod 5 = 2 (in Python: 17 \% 5)

Limits

- Formal definitions of limits involve \forall and \exists
- $\lim _{x \rightarrow a} f(x)=b$: "limit of $f(x)$ as \times goes to a"
- $\forall z>0, \exists y>0:|x-a|<y \Rightarrow|f(x)-b|<z$
- When x is "close" to a, then $f(x)$ is "close" to b
- $\lim _{n \rightarrow \infty} f(n)=b$: "limit of $f(n)$ as n goes to infinity":
- $\forall z>0, \exists \mathrm{n} 0: \mathrm{n}>\mathrm{n} 0 \Rightarrow|\mathrm{f}(\mathrm{n})-\mathrm{b}|<\mathrm{z}$
- When n is "big", $f(n)$ is "close" to b

Iterated functions (recursion)

- $f^{(i)}(x)$: function f , applied itimes to $\mathrm{x}: \mathrm{f}(\mathrm{f}(\mathrm{f}(\ldots \mathrm{f}(\mathrm{x}) \ldots)))$
- Not the same as $f^{i}(x)=(f(x))^{i}$
- e.g., $\log ^{(2)}(1000)=\log (\log (1000))=\log (3) \approx 0.477$
- But $\log ^{2}(1000)=(\log (1000))^{2}=3^{2}=9$
- By convention, $f^{(0)}(x)=x$ (apply f zero times)

Iterated $\log : \log ^{*}(\mathbf{n})$

- $\log ^{*}(n)=\min \left(i \geq 0: \log ^{(i)}(n) \leq 1\right)$
- \# times log needs to be applied to n until the result is
≤ 1
- e.g., let $\lg =\log _{2}$:
- then $\lg ^{*}(16)=3$, because
- $\lg (\lg (\lg (16)))=\lg (\lg (4))=\lg (2)=1$

Outtine for today

QAlgorithmic analysis

- Insertion sort
- Discrete math review
- Logic and proofs
- Monotonicity, limits, iterated functions
- Fibonacci sequence and golden ratio
- Asymptotic notation: V, O, L, 0, ω
- Proving asymptotic bounds

Fibonacci sequence

- The n-th Fibonacci number is $F_{n}=F_{n-1}+F_{n-2}$
- Start with $F_{0}=0, F_{1}=\ll 1$.

- Shows up all over nature
- Num of spirals on sunflowers, pinecones, etc.
- Vi Hart video: Dóodling in Math

The Golden ratio ϕ

- ϕ is the solution to the equation $x^{2}=x+1$
- $\phi=\frac{1 \pm \sqrt{5}}{2}$
- Actually, two solutions: ϕ and its conjugate, $\bar{\phi}$
- $\phi \approx 1.61803$, and $\bar{\phi} \approx-0.61803$
- Also shows up all over nature
- Dimensions of Nautilus seashells, spiral galaxies, etc.
- Aspect ratio in architecture, e.g., Parthenon

Fibonacci + goldén ratio

- Can prove $(\# 3.2-7)$ that $F_{n}=\frac{\phi^{n}-(\bar{\phi})^{n}}{\sqrt{5}}$
- Second term is fractional: $\frac{\mid\left(\overline{)^{n}} \mid\right.}{\sqrt{5}}<\frac{1}{2}$
- Thus: $F_{n}=\left\lfloor\frac{\phi^{n}}{\sqrt{5}}+\frac{1}{2}\right\rfloor=$ round $\left(\frac{\phi^{n}}{\sqrt{5}}\right)$
- i.e., Fibonacci grows exponentially!

Outtine for today

QAlgorithmic analysis

- Insertion sort
- Discrete math review
- Logic and proofs
- Monotonicity, limits, iterated functions
- Fibonacci sequence and golden ratio
- Asymptotic notation: $\Theta, O, \Omega, 0, \omega$
- Proving asymptotic bounds

Asymptotic growth: $0,0, \Omega$

- Behaviour "in the limit" (big n)
- Define V as class of functions: $f(n) \in V(g(n))$ iff
$-\exists \subset 11, c 2, n 0: \forall n \beta n 0,0 \leq c 11 g(n) \leq f(n) \leq c 2 g(n)$
- "Big O; specify only upper bound: $f(n) \in O(g(n))$ iff G $\ddagger 2, n 0: V n>n 0,0 \leq f(n) \leq c 2 g(n)$
e.g. $\theta\left(n^{2}\right) \subset O\left(n^{2}\right) \subset O\left(n^{3}\right)$
- Big Omega*:- $\mathrm{A}(\mathrm{g}(\mathrm{n})$) specifies only the lower bound Think of other examples?

Proving asymptotic growth

- (p.52 \#3.1-2) $\forall \mathrm{a}, \mathrm{b}>0$, prove: $(n+a)^{b} \in \Theta\left(n^{b}\right)$
- From definition: we need to find n_{0}, c_{1}, c_{2} such that $\forall n>n_{0}: c_{1} n^{b} \leq(n+a)^{b} \leq c_{2} n^{b}$
- i.e., find constants so we can sandwich $(n+a)^{b}$ in between two multiples of n^{b}

Prove: $(\mathbf{n}+\mathrm{a})^{\wedge} \mathrm{b} \in \Theta\left(\mathbf{n}^{\wedge} \mathrm{b}\right)$

- Observe that $n+a \geq n / 2$, as long as $n>2|a|$
- Also, $n+a \leq 2 n$, as long as $n>|a|$
- Hence, $n+a$ is sandwiched by $n / 2$ and $2 n$ (if $n>$ $2|a|):$

$$
\circ \mathrm{n} / 2 \leq \mathrm{n}+\mathrm{a} \leq 2 \mathrm{n}
$$

- Raise to the b power (x^{b} is monotone if $x>1, b>0$)
- Thus, $\left(\frac{n}{2}\right)^{b} \leq(n+a)^{b} \leq(2 n)^{b}$ (for $n>2|\mathrm{a}|$)
- So we select $n_{0}=2|a|, c_{1}=2^{-b}, c_{2}=2^{b}$
- This proves the Theta bound.

Asymptotic shorthand

- $\mathrm{V}(\mathrm{g})$ is a class of functions
- But for convenience, some short-hand notation:
- When V (et al) are on the right side of $=$:
- It means "there exists" $f \in \Theta(g)$
- e.g., $2 n^{2}+3 n=\Theta\left(n^{2}\right)$
- When V (et al) are on the left side of $=$:
- It means "for all" $f \in \Theta(g)$
- e.g., $4 n^{2}+\Theta(n \log (n))=\Theta\left(n^{2}\right)$
- True for any function in $\Theta(n \log (n))$

Asymptotic domination: $0, \omega$

- "Little o": like a strict less than inequality: $f \in o(g)$ iff
- $\forall c>0 \exists n 0: \forall n>n 0,0 \leq f(n)<c g(n)$
- i.e., the limit of $\mathrm{f}(\mathrm{n}) / \mathrm{g}(\mathrm{n}) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
- "Little omega": like a strict greater than: $f \in \omega(\mathrm{~g})$ iff
- $\forall c>0 \exists n 0: \forall n>n 0,0 \leq c g(n)<f(n)$
- i.e., the limit of $\mathrm{f}(\mathrm{n}) / \mathrm{g}(\mathrm{n}) \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$

Examples of 0 and ω

- Little 0: $n^{1.999} \in o\left(n^{2}\right)$, and $\frac{n^{2}}{\log (n)} \in o\left(n^{2}\right)$
- but $\frac{n^{2}}{10000} \notin o\left(n^{2}\right)$
- Little omega: $n^{2.0001} \in \omega\left(n^{2}\right)$ and $n^{2} \log (n)=\omega\left(n^{2}\right)$

Useful math identities

- All logs are the same up to a constant factor:
- $\log _{a}(n)=\left(\frac{1}{\log _{b}(a)}\right) \log _{b}(n)$
- So we often use $\lg =\log _{2}$ for convenience
- $\Theta(1) \subset o(\log (n)) \subset o(n) \subset o\left(n^{p}\right) \subset o\left(p^{n}\right)$
- For any constant p>1
- In fact, $\forall \mathrm{a}>1, \mathrm{~b}: \lim _{n \rightarrow \infty} \frac{n^{b}}{a^{n}}=0$
- Hence, $n^{b} \in o\left(a^{n}\right)$
- *"Exponentials dominate polynomials"*

Stirling's approximation

- Factorial: $n!=n(n-1)(n-2) . . .(2)(1)$
- Number of permutations of n distinct objects
- Stirling's approx: $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\Theta\left(\frac{1}{n}\right)\right)$
- Hence, $\log (n!) \in \Theta(n \log (n))$

Outtine for today

QAlgorithmic analysis

- Insertion sort
- Discrete math review
- Logic and proofs
- Monotonicity, limits, iterated functions
- Fibonacci sequence and golden ratio
- Asymptotic notation: V, O, L, O, ω
- Proving asymptotic bounds

Example asymptotic proof

- (p.62 \#3-3): Prove: $(\log n)!\in \omega\left(n^{3}\right)$
- Approach: take log of both sides (log is monotone)
- Left side: use Stirling: $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\Theta\left(\frac{1}{n}\right)\right)$
- So $\log (n!) \in V(n \log (n))$
- Now substitute $\log (\mathrm{n})$ for n , using monotonicity of log:
- So $\log ((\log n)!) \in V((\log n) \log (\log n))$

Prove: $(\log \mathrm{n})!=\omega\left(\mathrm{n}^{\wedge} 3\right)$

- ... so: $\log ((\log n)!) \in \mathrm{V}((\log n) \log (\log n))$
- Right side: $\log \left(n^{3}\right)=3 \log n$
- This is close to the left side, with 3 instead of $\log ($ $\log n$)
- But we only need an $\boldsymbol{\omega}$ bound, and $\log (\log n) \in$ $\omega(3)$
- Combining: $\log ((\log n)!) \in \Theta((\log n) \log (\log n))$

$$
\text { - }=\omega((\log n) 3)=\omega\left(\log \left(n^{3}\right)\right)
$$

- So by monotonicity, $(\log n)!\in \omega\left(n^{3}\right)$

Outtine for today

Algorithmic analysis

- Insertion sort
- Discrete math review
- Logic and proofs
- Monotonicity, limits, iterated functions
- Fibonacci sequence and golden ratio
- Asymptotic notation: V, O, L, 0, ω
- Proving asymptotic bounds

