
CMPT231
Lecture 10: ch22

Graph Algorithms

Some material from [Sedgewick + Wayne, "Algorithms"](http://algs4.cs.princeton.edu/)

cmpt231.seanho.com/lec10 b4d4d93 1 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Romans 10:13-15 (NIV)

“Everyone who calls on the name of the Lord will be

saved.”

How, then, can they call on

the one they have not believed in?

And how can they believe in

the one of whom they have not heard?

And how can they hear

without someone preaching to them?

And how can anyone preach unless they are sent?

As it is written: cmpt231.seanho.com/lec10 b4d4d93 2 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Outline for today
Intro to graph algorithms

Applications and typical problems

Edge list, adjacency list, adjacency matrix

Breadth-first graph traversal

Depth-first graph traversal

Parenthesis structure

Edge classification

Topological sort

Finding strongly-connected components

cmpt231.seanho.com/lec10 b4d4d93 3 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Intro to graph algorithms
Representing graphs: G = (V, E)

V: vertices / nodes

storage: array, linked-list, etc.

E: edges connecting vertices

directed or undirected

storage: edge list, adjacency matrix, etc.

Some corner cases:

Self-loop: edge from vertex to itself

Parallel edges: multiple edges with same

start/end

Complexity of graph algorithms in terms of
cmpt231.seanho.com/lec10 b4d4d93 4 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Applications of graphs

graph vertex edge

air transport airport flight path

social person friendship/relationship

internet computer network connection

finance stock/asset transaction

neural net neuron synapse

protein net protein protein-protein interaction

cmpt231.seanho.com/lec10 b4d4d93 5 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

cmpt231.seanho.com/lec10 b4d4d93 6 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

24hrs of flights in/out of Europe: [422South for NATS](http://422south.com/work/euro-24-air-tra�ic-visualization-for-nats)

cmpt231.seanho.com/lec10 b4d4d93 7 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

cmpt231.seanho.com/lec10 b4d4d93 8 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

cmpt231.seanho.com/lec10 b4d4d93 9 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Problems in graph theory
Path finding: is there a path from u to v?

Shortest path: find the shortest path from u to v

Cycle: does the graph have any cycles?

Euler cycle: traverse each edge exactly once

Hamilton cycle: touch each vertex exactly once

Connectivity: are all the vertices connected?

Bi-connectivity: can you disconnect the graph by

removing one vertex?

Planarity: draw graph in 2D w/o crossing edges?

Isomorphism: are two graphs equivalent?

cmpt231.seanho.com/lec10 b4d4d93 10 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Outline for today
Intro to graph algorithms

Applications and typical problems

Edge list, adjacency list, adjacency matrix

Breadth-first graph traversal

Depth-first graph traversal

Parenthesis structure

Edge classification

Topological sort

Finding strongly-connected components

cmpt231.seanho.com/lec10 b4d4d93 11 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Representing edges
Edge list: array/list of (u,v) pairs of nodes

[(1,2), (1,3), (2,4)]

How to find neighbours of a vertex u?

Adjacency list: indexed by start node

[{1: [2, 3]}, {2: [1, 4]}, {3: [1]}, {4: [2]}]

How to find the (out)-degree of each vertex?

Adjacency matrix: boolean |V| x |V| matrix

A[i,j] = 1 i� (i,j) is an edge:

What about directed graphs? Weighted graphs?cmpt231.seanho.com/lec10 b4d4d93 12 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Graph traversal: breadth-first
Traversal: visits each node exactly once

BFS: overlay a breadth-first tree

Choose a start (root) node

Path in tree = shortest path from root

Only nodes reachable from start node

BFS tree not necessarily unique

Graph could have loops:

Need to track which nodes we’ve seen

Assign colours to nodes as we traverse graph:

White: unvisited

Grey: on border (some unvisited neighbours)

Black: no unvisited neighbourscmpt231.seanho.com/lec10 b4d4d93 13 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

BFS algorithm
In: vertex list, adjacency (linked) list, start node

Out: modify vertex list, adding parent pointers

Complexity?

![BFS](static/img/Breadth-

First-Search-Algorithm.gif)
def BFS(V, E, start):

 init V all white and NULL paren

 start.colour = grey

 init FIFO: Q.push(start)

 while Q.notempty():

 u = Q.pop()

 for v in E.adj[u]:

 if v.colour == white:

v.colour = grey

v.parent = u

Q.push(v)

 u.colour = black

cmpt231.seanho.com/lec10 b4d4d93 14 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

BFS properties
BFS examines nodes in order of distance from source

Queue first holds all nodes of distance k,

Then all nodes of distance k+1, etc.

Levels of BFS tree = nodes of same distance from

source

⇒ BFS computes shortest paths from source

to all other reachable nodes in time

e.g., :

vertices = actors, edges = shared movies

Kevin Bacon number

cmpt231.seanho.com/lec10 b4d4d93 15 / 35

https://oracleofbacon.org/
https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Outline for today
Intro to graph algorithms

Applications and typical problems

Edge list, adjacency list, adjacency matrix

Breadth-first graph traversal

Depth-first graph traversal

Parenthesis structure

Edge classification

Topological sort

Finding strongly-connected components

cmpt231.seanho.com/lec10 b4d4d93 16 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Trémaux maze solving
Graph representation of a maze:

Vertex = intersection, edge = passage

Theseus slaying the

Minotaur in the

Labyrinth

Ariadne gave him a

tool: ball of string:

Unwind string as you go

Track each visited

intersection +

passage

Retrace steps when

![Theseus in the Labyrinth]

(static/img/Theseus-

Labyrinth.jpg)

cmpt231.seanho.com/lec10 b4d4d93 17 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Depth-first search
First explore as deep as we can

Backtrack to explore other paths

Recursive algorithm (ball of string = call stack)

Colouring: white = undiscovered, grey = discovered,

black = finished (visited all neighbours)

Add timestamps on discover and finish

Overlay a forest on the graph

Subtree at a node = all nodes visited between

this node’s discovery and finish

cmpt231.seanho.com/lec10 b4d4d93 18 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

DFS algorithm
![DFS anim]

(static/img/Depth-

First-Search.gif) !

[DFS]

(static/img/DFS.svg)

def DFS(V, E):

 init V all white and NULL parent

 time = 0

 for u in V: # why loop over ALL vert

 if u.colour == white:

 DFS-Visit(V, E, u)

def DFS-Visit(V, E, u):

 time++

 u.discovered = time

 u.colour = gray

 for v in E.adj[u]:

 if v.colour == white:

 v.parent = u

 DFS-Visit(V, E, v)

 u.colour = black

 time++

 u.finished = time

cmpt231.seanho.com/lec10 b4d4d93 19 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Outline for today
Intro to graph algorithms

Applications and typical problems

Edge list, adjacency list, adjacency matrix

Breadth-first graph traversal

Depth-first graph traversal

Parenthesis structure

Edge classification

Topological sort

Finding strongly-connected components

cmpt231.seanho.com/lec10 b4d4d93 20 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

DFS: parenthesis structure
Each node’s subtree is visited

between its discovery and finish times

Print a when we discover node u

Print a when we finish it

Output is a valid parenthesisation:

e.g.,

But not

The (discover, finish) intervals for any two vertices

are

Either completely disjoint

Or one contained in the other
cmpt231.seanho.com/lec10 b4d4d93 21 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

DFS: white-path theorem
The (d, f) interval for v is contained in u

⇔ v is a descendant of u in the DFS

i.e., u.d < v.d < v.f < u.f

White-path theorem:

v is a descendant of u in

the DFS ⇔

When u is discovered,

there is

a path u → v all of white

vertices

![DFS]

(static/img/DFS.svg)

cmpt231.seanho.com/lec10 b4d4d93 22 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

DFS: flood-fill
Vertex: pixel

Edge: adjacent pixels of similar colour

Blob: all pixels connected to given pixel

![Manhattan map](static/img/Manhattan.svg)

![Australia grid](static/img/Australia_grid2.png)

cmpt231.seanho.com/lec10 b4d4d93 23 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

DFS: edge classification
All edges in a graph are either

Tree edges: in the DFS forest

Back edges: up to ancestor in same DFS tree

(incl self-loop)

Forward edges: down to descendant

Cross edges: di�erent subtrees or DFS trees

For directed graphs: acyclic ⇔ no back edges

cmpt231.seanho.com/lec10 b4d4d93 24 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

DFS: preparing for a date (XKCD)

cmpt231.seanho.com/lec10 b4d4d93 25 / 35

http://xkcd.com/761/
https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Outline for today
Intro to graph algorithms

Applications and typical problems

Edge list, adjacency list, adjacency matrix

Breadth-first graph traversal

Depth-first graph traversal

Parenthesis structure

Edge classification

Topological sort

Finding strongly-connected components

cmpt231.seanho.com/lec10 b4d4d93 26 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

DFS: topological sort
Linear ordering of vertices such that:

for every edge u → v, u comes before v in the

sort

Assumes no cycles! (i.e., DAG: directed acyclic)

Applications: dependency resolution, compiling files,

task planning / Gantt chart

Use DFS to sort in decreasing order of finish time

As each vertex finishes, insert at head of a linked

list

DFS might not be unique, so

topological sort might not be unique
cmpt231.seanho.com/lec10 b4d4d93 27 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Topological sort: example

cmpt231.seanho.com/lec10 b4d4d93 28 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Topological sort: proof
Recall DFS colouring: white = undiscovered

grey = discovered, black = finished

Proof of correctness:

When DFS explores (u,v), what colour is v?

if gray: then v is an ancestor of u

So (u,v) is a back edge

So graph has a loop (disallowed)

if white: then v becomes a child of u:

u.d < v.d < v.f < u.f

if black: then v is done, but not u yet:

v.f < u.f
cmpt231.seanho.com/lec10 b4d4d93 29 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

DFS: connected components
Largest completely-connected set of vertices:

Every vertex has a path to every other vertex in

the component

Algorithm:

Compute DFS to find finishing times

Transpose the graph: reverse all edges

Compute DFS on transposed graph

Start at vertex that finished last in orig DFS

Each tree in final DFS is a separate component

cmpt231.seanho.com/lec10 b4d4d93 30 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Connected components
(a) Original graph:

DFS trees

shaded

DFS starts at

c

(b) Transpose

graph:

All edges

reversed

DFS trees

shaded

DFS starts at

![Fig 22-9: components]

(static/img/Fig-22-9.svg)

cmpt231.seanho.com/lec10 b4d4d93 31 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Problems in graph theory
Path finding: is there a path from u to v?

Shortest path: find the shortest path from u to v

Cycle: does the graph have any cycles?

Euler cycle: traverse each edge exactly once

Hamilton cycle: touch each vertex exactly once

Connectivity: are all the vertices connected?

Bi-connectivity: can you disconnect the graph by

removing one vertex?

Planarity: draw graph in 2D w/o crossing edges?

Isomorphism: are two graphs equivalent?

cmpt231.seanho.com/lec10 b4d4d93 32 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Outline for today
Intro to graph algorithms

Applications and typical problems

Edge list, adjacency list, adjacency matrix

Breadth-first graph traversal

Depth-first graph traversal

Parenthesis structure

Edge classification

Topological sort

Finding strongly-connected components

cmpt231.seanho.com/lec10 b4d4d93 33 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

Online demos
Breadth-first search:

 (generate random graphs)

 (draw your own graph; step through

code)

Depth-first search:

 (only one tree of the DFS forest)

 (edge classification, only one tree)

Topological sort:

,

Connected components:

(SCC: Kosaraju’s algorithm)

U San Fran

VisuAlgo

U San Fran

VisuAlgo

U San Fran VisuAlgo

U San Fran

VisuAlgocmpt231.seanho.com/lec10 b4d4d93 34 / 35

https://www.cs.usfca.edu/~galles/visualization/BFS.html
https://visualgo.net/dfsbfs
https://www.cs.usfca.edu/~galles/visualization/DFS.html
https://visualgo.net/dfsbfs
https://www.cs.usfca.edu/~galles/visualization/TopoSortDFS.html
https://visualgo.net/dfsbfs
https://www.cs.usfca.edu/~galles/visualization/ConnectedComponent.html
https://visualgo.net/dfsbfs
https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

cmpt231.seanho.com/lec10 b4d4d93 35 / 35

https://github.com/cmpt231-16fa/lec10
http://localhost:9000/static/lec10.pdf

