CMPT231

Lecture 2: ch4-5

Divide and Conquer, Recurrences,
Randomised Algorithms

it

U]

cmpt231.seanho.com/lec2- (W]l 3% 1/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

James 1:2-4 (NASB)

Consider it all joy, my brethren,
when you encounter various trials,
knowing that the testing of your faith produces
endurance.

And let endurance have its perfect result,
so that you may be perfect and complete,
lacking in nothing.

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

James 1:5-8 (NASB)

But if any of you lacks wisdom, let him ask of God,
who gives to all generously and without reproach,
and it will be given to him.

But he must ask in faith without any doubting,
for the one who doubts is like the surf of the sea,
driven and tossed by the wind.

For that man ought not to expect
that he will receive anything from the Lord,
being a double-minded man, unstable in all his ways.

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

-1 ';‘,_..
;‘: W

Wi et

¢

o

Outline for

e Divide and conquer (ch4) :
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen‘s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)
= Hiring problem and analysis
= Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2- (W]l 3% 4143

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Divide and conquer

e |nsertion sort was incremental:
m At each step, A[1..]-1] has been sorted, so
m Insert Alj] such thatA[l..|]is now sorted
e Divide and conquer strategy:
s Split task up into smaller chunks
= Small enough chunks can be solved directly
(base case)
s Combine results and return
e Implement via recursion or loops
m Usually, recursion is easier to code but slower
to run

cmpt231l.seanho.com/lec2 QA 5/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Merge sort

e Split array in half EC AR SOy, (5, 7))
= [fonly 1 elt, we're S el () 2]
done o, e oy
e Recurse to sort each nergetA P a1
half
e Merge sorted sub-
arrays
= Need to do this
efficiently

cmpt231l.seanho.com/lec2 O 6/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Efficient merge in O(n)

e Assume subarrays are sorted:
m Alp..gland Alg+1..r],withp = g<r
e Make temporary copies of each sub-array
= Append an “oco“ marker item to end of each
copy
e Step through the sub-arrays, using two indices (i,}):
= Copy smaller element into main array
o and advance pointer in that sub-array
e Complexity: ©(n)

Maln : [AI CI DI EI HI JI 14 4 14 14 4]
L: [C, E, HL *K, P, R, inf] || R: [A, D, J, *L, N, T, inf]

cmpt231l.seanho.com/lec2 O 7143

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Merge step: in pseudocode

def merge(A, p, q, r):
(nl/ n2) - (q_p+1l r'q)

new arrays: L[1 .. n1+1], R[1 .. n2+1]

for 1 in 1 .. nl: L[1] = A[p+i-1]
for j in 1 .. n2: R[J] = A[g+]]
(L[n1+1], R[n2+1]) = (inf, inf)

(1, 3)=(1, 1)
for k inp .. r:
if L[1] <=R[J]:

cmpt231l.seanho.com/lec2 O 8/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Complexity of merge sort

e Recurrence relation: base case + inductive step
s Basecase:ifn=1,thenT(n)=06(1)
» Inductive step:ifn>1,then T(n) =2T(n/2) + O(n)
o Sort 2 halves of size n/2, then merge in
O(n)
e How to solve this recurrence?
= Function call diagram looks like binary tree
» Each level L has 2% recursive calls

= Each call performs 271 work in the merge step

cmpt231l.seanho.com/lec2 O 9/4

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Recurrence tree

e Total work at each level is ©(n)
= Total number of levelsis lg(n)
s = Total complexity: ©(n lg(n))
e This is not a formal proof!
= A guess that we can prove by induction

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

;‘,.‘ W

e Divide and conquer (ch4)
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen’s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)
= Hiring problem and analysis
= Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2- (W]l 3% 11/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Mathematical induction

e Deduction: general principles = specific case
e Induction: representative case = general rule
e Proof by induction needs two axioms:
= Base case: starting point,e.g.,atn=1
= Inductive step: assuming the rule holds at n,
o prove it also holds at n+1
o equivalently, assume true V. m <n, and
prove for n
e This proves the rule for all (positive) n

cmpt231l.seanho.com/lec2 O 12 /43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Example of inductive proof

n(n + 1)
2

e Recall Gauss‘ formula:) j =
j=1

e We can prove it by induction:
e Prove basecase (n=1):1=(1)(1+1)/2
* Prove inductive step:

= Assume:) j= n(n; L
j=1
n+1
= Prove:) j= (n+ 1)2(n +2)

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Inductive step of Gauss’ formula
o %j: (i]) + (n+ 1)

- + (n + 1) (by inductive hypothesis)

° — + (n + 1)
n® +n -+ 2n + 2

2
n® + 3n + 2

2

. (27 1)2("’ +2) , proving the inductive step

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Inductive proof for merge sort

e Recurrence:T(n) = 2T(g) + O(n), with T(1) = O(1)

e Guess (from recursion tree): T(n) =0(n lg n)

e Prove basecase: T(1)=0(11g1)=06(1)

e Inductive hypothesis: assume d¢;, ¢z, ng: Vg <m <
N, cymlgm < T(m) < camlgm

e Inductive step: with the same constants ¢, ¢y, we
want to prove c;nlgn < T'(n) < conlgn

cmpt231l.seanho.com/lec2 QA 15/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Inductive step for merge sort

e Userecurrence and defn of ©(n): d ¢, cs:
2T(g) +csn < T'(n) < 2T(g) + cyn

e Apply inductive hypothesis with m =n/2:

n n n n
201 (3)18(5) +esm < T() < 200(5)18(35)
C1 5 g 5 +csn < T(n) < 2¢ 5 g 5 + ceqm

o = cin(lgn —1g2) + csn < T'(n) < cen(lgn —1g2) + c4n
e = cinlgn+ (c3 —c1)n < T(n) < conlgn + (¢4 — c2)n

e = cinlgn < T(n) < cenlgn

e Last step possible by choosinge; < ecs andcs > ¢4

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

;‘,.‘ W

e Divide and conquer (ch4)
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen’s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)
= Hiring problem and analysis
= Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2- (W]l 3% 17143

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Maximum subarray

e Input: array A[1 .. n] of numbers (could be negative)
e Output:indices (i,]) to maximise sum(Ali .. |])
= e.g., input daily change in stock price:
o find optimal time to buy (i) and sell (j)
 Exhaustive check of all (i,)): ©(n?)

4 5 6] 8 9 10 11 12

100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97
13 -3 =25 20 —3 —16 —23 18 20 —7 12 —5 =22 15 —4 7

cmpt231.seanho.co 18/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Max subarray: algorithm

e Split array in half
e Recursively solve each half
= (what’s the base case?)
e Find the max subarray which spans the midpoint
= Do thisin O(n)
e Choose best out of 3 options (left, right, span) and
return

crosses the mic I|‘1 Hint

[J’”!‘l'l' . J']

T L_ 1] LI —

— mid +1 ™ — mid + 1
entirely in 4[! . mid] entirely in . [m d+1..high] Ali . ””f"r]

(a) (b)
cmpt231l.seanho.com/lec2 QA 19/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Span midpoint

e Find the maximum subarray that spans the midpoint
e Decrement i down from the midpoint to the low
end
= Maximise sum(A[i.. mid])
e Increment jup frommid+1 to the high end
= Maximise sum(A[mid+1..]])
e Total timeisonly linearinn

crosses the mulrunn[

Almid + 1. j]

mid high low i mid ——— ——, hieh

L L —

mid + | i S mid + 1
entirely in .-4[!::11 . mid] entirely in . [m id + 1..high] Ali .. mid]

(a) (b)
cmpt231l.seanho.com/lec2 Q[20/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Max subarray: complexity

def max_subarray(A, low, mid, high):
split_array()

0(1)
max_subarray(left_half)
T(n/2)
max_subarray(right_half)
T(n/2)
midpt_max_subarray()

Theta(n)
return best_of_3()

0(1)
e Recurrence: T(n)=2T(n/2) + O(n)

= Base case: T(1)=0(1)
oo Sm0aMne 3 merge sort: solution is T(n) =0(n lg n)

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Programming Joke

e There’s always a way to shorten a program by one
line.
= But, there’s also always one more bug.
= = Byinduction, any program can be shortened
to a single line, which doesn’t work.

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

;‘,.‘ W

e Divide and conquer (ch4)
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen’s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)
= Hiring problem and analysis
= Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2- (W]l 3% 23/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Matrix multiply

e Input: two n x n matrices Ali,j| and B[',j]
e Output: C=A % B, where C[i, j] ZA[z k| B[k, j]

. o.g [Cu 012] _ [All A12] X [Bll 312]
Oy Co Ao Ago By1 By

o Simplest method:

def mult(A, B, n):
for 1 in 1 .. n:
for in 1 .. n:
for k in 1 .. n:
C[i, j] += A[1, k] * B[k, J]
return C

Complexity? Can we do better?

cmpt231l.seanho.com/lec2 O 24143

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Divide-and-conquer mat mul

e Split matrices into 4 parts (assume n a power of 2)
e Recurse 8 times to get products of sub-matrices

e Add and combine info final result:
[Cn 012] _ [An A12]) [Bn B12]
Ca1 COa Ay Ay Bs1 B
" C11 = Au1 * By + A2 * By
8 (o = Ay1 * Big + A1 * By, ...
e What’s the base case?
e How to generalise to n not a power of 27

cmpt231l.seanho.com/lec2 QA 25/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Complexity of divide-and-
conquer

e Split: O(1) by using indices rather than copying
matrices

e Recursion: 8 calls, each of time T(n/2)

e Combine: each entry in C needs one add: ©(n?)

e Sotherecurrenceis:T(n) = 8T(g) + 0(n%)

= Unfortunately, this resolves to ©(n?)
= No better than the simple solution
e What gets us is the 8 recursive calls
= Strassen‘s idea: save 1 recursive call
cmpr31seanho. by @@ending more on sums (which are only

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Strassen’s matrix multiply

e 10 sums of submatrices: S; = Bis — Bss,
So = A11 + Ag2, 83 = A + Az, Sy = By — Biy,
S5 = Ai1 + Ao, S¢ = B11 + Bag, S7 = A1z — Ag,
Sg = Ba1 + Bay, S9 = A1 — Agi, S10 = B + Bas.
e 7recursivecalls: P, = A;; x S1, P, = Sy % Boo,
P; = S3 x By, Py = Aoy % Sy, P = S5 xS,
Py = S7 % S5, P, = Sg x S1g.
e 4resultsviaaddition:Cy; = P; + Py — P, + P,

Cio =P +P,C =P3+P;,Co=F+P — P —F

cmpt231.seanho.com/lec2 Q[

27143

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Complexity of Strassen’s method

e Even though more sums are done, still all © (n?)
= Doesn’t change total asymptotic complexity
= Might not be worth it for small n, though

e Recurrence:T(n) = 7T(g) + @(n2)

= Saved us 1 recursive call!
= Solution: T(n) = ©(n'®")
e Thisis an example of the master method
m For recurrences of form T(n)=a T(n/b)+ ©(f(n)
)
= Compare f(n) with n'°& ¢
= |s more work done in leaves of tree or roots?

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

;‘,.‘ %!

s AR G A - % o :
£ '-.'. ,“lf» l‘: %’ ﬁl‘] (0

; ‘;._. : ﬂiﬁ ¥t LT

o

Outline for tod ay

e Divide and conquer (ch4)
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen’s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)

= Hiring problem and analysis
= Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2- (W]l 3% 29/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Master method for recurrences

e |[f T(n) hasthe form:a T(n/b) +f(n), witha,b>0
m Mergesort:a=2,b=2,f(n)=0(n)
o Case l:if f(n) € ©(n'®)
= Leaves/roots balanced: T'(n) = ©(n'*® ® logn)
o Case2:if f(n) € O(n'*®**) forsomez>0
= Leaves dominate: T'(n) = ©(n'*&*)
o Case 3:if f(n) € Q(n"® ") for some z>0, and if
af(%) < cf(n) forsomec<1andbign

= Roots dominate: T(n) = O(f(n))
= Polynomials f(n) = n* satisfy the regularity
condition

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Master method: merge sort

e Recurrence: T(n)=2T(n/2) + O(n):

"= a=2,b=2,f(n)=0(n)
* f(n) = ©(n) = O(n'*%?)

= So leaves and roots are balanced (case 1)
o Solutionis T(n) = ©(n'*%*logn) = O(nlogn)

cmpt231.seanho.com/lec2 ©[A

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Master method: Strassen

e Recurrence: T(n)=7T(n/2) + ©(n"2)
m a=7,b=2,f(n)=0(n"2)
¢ f(n) = @(nz) _ O(n10g2 7—s)
m [g7=2.8,5s0,e.g.,z=0.4works
= So leaves dominate (case 2)
e Solutionis T(n) = ©(n' ") ~ ©(n*®)

cmpt231.seanho.com/lec2 ©[A

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Gaps in master method

e Doesn’t cover all recurrences of form a T(n/b) + f(n)!
m e.g.,T(n)=2T(n/2) +nlogn
= Caselinlogn ¢ ©(n'°%?) = O(n)
m Case2:nlogn & O(nl_e), foranyz>0
= Case3:nlogn ¢ Q(n'*?),foranyz>0
o becauselogn ¢ Q(n°)Vz>0
e Need to use other methods to solve
= Some recurrences are just intractable

cmpt231l.seanho.com/lec2 QA 33/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Polylog extension

e Generalisation of master method
e Appliesfor f(n) € @(nl"gb(“) log" (n))
= (log to k power, not iterated log)
e Solution: T(n) = © (nlogb<a> logh+? (n))
= Regular master method is special case, k=0
e Previous example: T(n)=2T(n/2) +nlogn
= Solution: T(n) = ©(nlog” n)

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

"3. ';‘,_..
;‘: W

1o

- B

Outline for

e Divide and conquer (ch4)
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen’s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)
= Hiring problem and analysis
= Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2- (W]l 3% 35/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Probabilistic analysis

e Running time of insertion sort depended on input
m Best-case vs worst-case vs average-case
e Random variable X: takes values within a domain
= Domain!| couldbe [0,1],R=(-00,00), R,
(A, A-, B+, ...),{blue, red,
black}, etc.
e Distribution P(X): says which values are more likely
= Uniform: all values equally likely
= Normal (Gaussian) “bell curve” N(L., o)
e Expected value E(X): weighted average

cmpt231.seanho.co.m/l£({°)(|£ — LFQP(X) — ZP(X)

X —~— 0O

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Example: hiring problem

e Input: list of candidates with suitability {s;}>_,
m cost per interview: ¢;. cost per hire: ¢, > ¢
e Output: list of hiring decisions {X;} € {0,1}"
= Constraint: at any point, best candidate so far is

hired
» Goal: minimise total cost of interviews + hires

e Totalcostis:cin +c Y X;
1=1
» |nterview cost is fixed, so focus on hiring cost
e Worst case: every new candidateis hired: X; = 1V

» (What kind of suitabilities {s; } would cause
cmpt231.seanho.com/l$h ig;@) 37/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Analysis of hiring problem

e Assume order of candidates is random
m each of n! possible permutations is equally
likely
e Foreach candidate i, find probability of being hired:
= Most suitable candidate seen so far
= 5, needs to be max of {s;}._,

= if orderis random, likelihood is 1/i

" SOP(X;) = -

(/
e Now we can derive the expected hiring cost

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Expected hiring cost

n

* Elcz Y X;| =cn Y E[X;] (by linearity of E)
] i—1

¢ =cp) % (random order, see prev slide)

e = c,(Inn + O(1)) (harmonic series)
e = much better than worst-case: c;,n

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Randomised algorithms

e Above analysis assumed input order was random
= But we can’t always assume that!

e Soinject randomness into the problem:
= Shuffle input before running algorithm

e Use a pseudo-random number generator (PRNG)
s Typically, returns a floatinrange [0, 1)

m Sequence is reproducible by setting seed
e Or hardware RNG module (on motherboard, USB,
etc.)
= shot noise, Zener diode noise, beam splitters,
etc.

cmpt231.seanho.com/lec2 Q[

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Fisher-Yates shuffle

e |dea by Fisher + Yates (1938)
= Implementation via swaps by Durstenfeld
(1964)
e Randomly permute input A[] in-place, in O(n) time

def shuffle(A, n):
for 1 in 1 to n:
swap(A[i], A[random(i, n)])

e Use PRNG random(a, b):intbetweenaandb
e Correctness can be proved via loop invariant:
n After i-th iteration, each possible permutation of
length iisinthe subarray A[1 ..1] with

cmpt231.seanho.com/lBrQ)Babi“ty (n_l)!/n! 41143

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

-1 ';‘,_..
;‘: W

Wi et

. i

Outline for
e Divide and conquer (ch4) :
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen‘s method
= Master method of solving recurrences
e Probabilistic Analysis (ch5)

= Hiring problem and analysis
= Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2- (W]l 3% 42/43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

....v :

...r.. .
=

H

..M‘Wv_p M»# i
FORLIE S A

A

o
!4..-__.

' .

- .._,M”.,,..-m - *

. : _., ." -..u__.. 2 N-th
FoAR R TN

R

. wtda 4 S

,..n.ﬂ.

OIJ..

A%

i ay
T AL i

AT

Y ik
Youte

43/43

¥
a2

cmpt231.seanho.com/lec2 Ny

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

