
CMPT231
Lecture 2: ch4-5

Divide and Conquer, Recurrences,
Randomised Algorithms

cmpt231.seanho.com/lec2  59a262d 1 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

James 1:2-4 (NASB)

Consider it all joy, my brethren,

when you encounter various trials,

knowing that the testing of your faith produces

endurance.

And let endurance have its perfect result,

so that you may be perfect and complete,

lacking in nothing.

cmpt231.seanho.com/lec2  59a262d 2 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

James 1:5-8 (NASB)

But if any of you lacks wisdom, let him ask of God,

who gives to all generously and without reproach,

and it will be given to him.

But he must ask in faith without any doubting,

for the one who doubts is like the surf of the sea,

driven and tossed by the wind.

For that man ought not to expect

that he will receive anything from the Lord,

being a double-minded man, unstable in all his ways.
cmpt231.seanho.com/lec2  59a262d 3 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Outline for today

Divide and conquer (ch4)

Merge sort, recursion tree

Proof by induction

Maximum subarray

Matrix multiply, Strassen‘s method

Master method of solving recurrences

Probabilistic Analysis (ch5)

Hiring problem and analysis

Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2  59a262d 4 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Divide and conquer

Insertion sort was incremental:

At each step, A[1 .. j-1] has been sorted, so

Insert A[j] such that A[1 .. j] is now sorted

Divide and conquer strategy:

Split task up into smaller chunks

Small enough chunks can be solved directly

(base case)

Combine results and return

Implement via recursion or loops

Usually, recursion is easier to code but slower

to run
cmpt231.seanho.com/lec2  59a262d 5 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Merge sort

Split array in half

If only 1 elt, we’re

done

Recurse to sort each

half

Merge sorted sub-

arrays

Need to do this

e�iciently

def merge_sort(A, p, r):

 if p >= r: return

 q = floor((p+r) / 2)

 merge_sort(A, p, q)

 merge_sort(A, q+1, r)

 merge(A, p, q, r)

cmpt231.seanho.com/lec2  59a262d 6 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

E�icient merge in Θ(n)

Assume subarrays are sorted:

A[p .. q] and A[q+1 .. r], with p ≤ q < r

Make temporary copies of each sub-array

Append an “∞“ marker item to end of each

copy

Step through the sub-arrays, using two indices (i,j):

Copy smaller element into main array

and advance pointer in that sub-array

Complexity: Θ(n)

Main : [A, C, D, E, H, J, , , , , ,]

L: [C, E, H, *K, P, R, inf] || R: [A, D, J, *L, N, T, inf]

cmpt231.seanho.com/lec2  59a262d 7 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Merge step: in pseudocode

def merge(A, p, q, r):

 (n1, n2) = (q-p+1, r-q)

 # lengths

 new arrays: L[1 .. n1+1], R[1 .. n2+1]

 for i in 1 .. n1: L[i] = A[p+i-1]

 # copy

 for j in 1 .. n2: R[j] = A[q+j]

 (L[n1+1], R[n2+1]) = (inf, inf) # sentinel

 (i, j) = (1, 1)

 for k in p .. r:

 if L[i] <= R[j]:

cmpt231.seanho.com/lec2  59a262d 8 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Complexity of merge sort

Recurrence relation: base case + inductive step

Base case: if n = 1, then T(n) = Θ(1)

Inductive step: if n > 1, then T(n) = 2T(n/2) + Θ(n)

Sort 2 halves of size n/2, then merge in

Θ(n)

How to solve this recurrence?

Function call diagram looks like binary tree

Each level L has recursive calls

Each call performs work in the merge step

cmpt231.seanho.com/lec2  59a262d 9 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Recurrence tree

Total work at each level is Θ(n)

Total number of levels is lg(n)

⇒ Total complexity: Θ(n lg(n))

This is not a formal proof!

A guess that we can prove by induction

cmpt231.seanho.com/lec2  59a262d 10 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Outline for today

Divide and conquer (ch4)

Merge sort, recursion tree

Proof by induction

Maximum subarray

Matrix multiply, Strassen’s method

Master method of solving recurrences

Probabilistic Analysis (ch5)

Hiring problem and analysis

Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2  59a262d 11 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Mathematical induction

Deduction: general principles ⇒ specific case

Induction: representative case ⇒ general rule

Proof by induction needs two axioms:

Base case: starting point, e.g., at n = 1

Inductive step: assuming the rule holds at n,

prove it also holds at n+1

equivalently, assume true ∀ m < n, and

prove for n

This proves the rule for all (positive) n

cmpt231.seanho.com/lec2  59a262d 12 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Example of inductive proof

Recall Gauss‘ formula:

We can prove it by induction:

Prove base case (n = 1): 1 = (1)(1+1)/2

Prove inductive step:

Assume:

Prove:

cmpt231.seanho.com/lec2  59a262d 13 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Inductive step of Gauss’ formula

 (by inductive hypothesis)

, proving the inductive step

cmpt231.seanho.com/lec2  59a262d 14 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Inductive proof for merge sort

Recurrence: , with T(1) = Θ(1)

Guess (from recursion tree): T(n) = Θ(n lg n)

Prove base case: T(1) = Θ(1 lg 1) = Θ(1)

Inductive hypothesis: assume ∃ : ∀ < m <

n,

Inductive step: with the same constants , we

want to prove

cmpt231.seanho.com/lec2  59a262d 15 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Inductive step for merge sort

Use recurrence and defn of Θ(n): ∃ :

Apply inductive hypothesis with m = n/2:

Last step possible by choosing and

cmpt231.seanho.com/lec2  59a262d 16 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Outline for today

Divide and conquer (ch4)

Merge sort, recursion tree

Proof by induction

Maximum subarray

Matrix multiply, Strassen’s method

Master method of solving recurrences

Probabilistic Analysis (ch5)

Hiring problem and analysis

Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2  59a262d 17 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Maximum subarray

Input: array A[1 .. n] of numbers (could be negative)

Output: indices (i,j) to maximise sum(A[i .. j])

e.g., input daily change in stock price:

find optimal time to buy (i) and sell (j)

Exhaustive check of all (i,j):

cmpt231.seanho.com/lec2  59a262d 18 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Max subarray: algorithm

Split array in half

Recursively solve each half

(what’s the base case?)

Find the max subarray which spans the midpoint

Do this in Θ(n)

Choose best out of 3 options (le�, right, span) and

return

cmpt231.seanho.com/lec2  59a262d 19 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Span midpoint

Find the maximum subarray that spans the midpoint

Decrement i down from the midpoint to the low

end

Maximise sum(A[i .. mid])

Increment j up from mid+1 to the high end

Maximise sum(A[mid+1 .. j])

Total time is only linear in n

cmpt231.seanho.com/lec2  59a262d 20 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Max subarray: complexity

Recurrence: T(n) = 2T(n/2) + Θ(n)

Base case: T(1) = O(1)

Same as merge sort: solution is T(n) = Θ(n lg n)

def max_subarray(A, low, mid, high):

 split_array()

 # O(1)

 max_subarray(left_half)

 # T(n/2)

 max_subarray(right_half)

 # T(n/2)

 midpt_max_subarray()

 # Theta(n)

 return best_of_3()

 # O(1)

cmpt231.seanho.com/lec2  59a262d 21 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Programming Joke

There’s always a way to shorten a program by one

line.

But, there’s also always one more bug.

⇒ By induction, any program can be shortened

to a single line, which doesn’t work.

cmpt231.seanho.com/lec2  59a262d 22 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Outline for today

Divide and conquer (ch4)

Merge sort, recursion tree

Proof by induction

Maximum subarray

Matrix multiply, Strassen’s method

Master method of solving recurrences

Probabilistic Analysis (ch5)

Hiring problem and analysis

Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2  59a262d 23 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Matrix multiply

Input: two n x n matrices A[i,j] and B[i,j]

Output: C = A ∗ B, where

e.g.,

Simplest method:

Complexity? Can we do better?

def mult(A, B, n):

 for i in 1 .. n:

 for j in 1 .. n:

 for k in 1 .. n:

C[i, j] += A[i, k] * B[k, j]

 return C

cmpt231.seanho.com/lec2  59a262d 24 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Divide-and-conquer mat mul

Split matrices into 4 parts (assume n a power of 2)

Recurse 8 times to get products of sub-matrices

Add and combine info final result:

, …

What’s the base case?

How to generalise to n not a power of 2?

cmpt231.seanho.com/lec2  59a262d 25 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Complexity of divide-and-

conquer

Split: O(1) by using indices rather than copying

matrices

Recursion: 8 calls, each of time T(n/2)

Combine: each entry in C needs one add:

So the recurrence is:

Unfortunately, this resolves to

No better than the simple solution

What gets us is the 8 recursive calls

Strassen‘s idea: save 1 recursive call

by spending more on sums (which are only cmpt231.seanho.com/lec2  59a262d 26 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Strassen’s matrix multiply

10 sums of submatrices: ,

, , ,

, , ,

, , .

7 recursive calls: , ,

, , ,

, .

4 results via addition: ,

, ,

.

cmpt231.seanho.com/lec2  59a262d 27 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Complexity of Strassen’s method

Even though more sums are done, still all

Doesn’t change total asymptotic complexity

Might not be worth it for small n, though

Recurrence:

Saved us 1 recursive call!

Solution:

This is an example of the master method

For recurrences of form T(n) = a T(n/b) + Θ(f(n)

)

Compare f(n) with

Is more work done in leaves of tree or roots?
cmpt231.seanho.com/lec2  59a262d 28 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Outline for today

Divide and conquer (ch4)

Merge sort, recursion tree

Proof by induction

Maximum subarray

Matrix multiply, Strassen’s method

Master method of solving recurrences

Probabilistic Analysis (ch5)

Hiring problem and analysis

Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2  59a262d 29 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Master method for recurrences

If T(n) has the form: a T(n/b) + f(n), with a, b > 0

Merge sort: a = 2, b = 2, f(n) = Θ(n)

Case 1: if

Leaves/roots balanced:

Case 2: if for some ε > 0

Leaves dominate:

Case 3: if for some ε > 0, and if

 for some c < 1 and big n

Roots dominate:

Polynomials satisfy the regularity

condition
cmpt231.seanho.com/lec2  59a262d 30 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Master method: merge sort

Recurrence: T(n) = 2T(n/2) + Θ(n):

a = 2, b = 2, f(n) = Θ(n)

So leaves and roots are balanced (case 1)

Solution is

cmpt231.seanho.com/lec2  59a262d 31 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Master method: Strassen

Recurrence: T(n) = 7T(n/2) + Θ(n^2)

a = 7, b = 2, f(n) = Θ(n^2)

lg 7 ≃ 2.8, so, e.g., ε = 0.4 works

So leaves dominate (case 2)

Solution is

cmpt231.seanho.com/lec2  59a262d 32 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Gaps in master method

Doesn’t cover all recurrences of form a T(n/b) + f(n)!

e.g., T(n) = 2T(n/2) + n log n

Case 1:

Case 2: , for any ε > 0

Case 3: , for any ε > 0

because ∀ ε > 0

Need to use other methods to solve

Some recurrences are just intractable

cmpt231.seanho.com/lec2  59a262d 33 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Polylog extension

Generalisation of master method

Applies for

(log to k power, not iterated log)

Solution:

Regular master method is special case, k = 0

Previous example: T(n) = 2T(n/2) + n log n

Solution:

cmpt231.seanho.com/lec2  59a262d 34 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Outline for today

Divide and conquer (ch4)

Merge sort, recursion tree

Proof by induction

Maximum subarray

Matrix multiply, Strassen’s method

Master method of solving recurrences

Probabilistic Analysis (ch5)

Hiring problem and analysis

Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2  59a262d 35 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Probabilistic analysis

Running time of insertion sort depended on input

Best-case vs worst-case vs average-case

Random variable X: takes values within a domain

Domain Ω could be [0,1], = (-∞, ∞), ,

(A, A-, B+, ...), {blue, red,

black}, etc.

Distribution P(X): says which values are more likely

Uniform: all values equally likely

Normal (Gaussian) “bell curve” N(μ, σ)

Expected value E(X): weighted average

cmpt231.seanho.com/lec2  59a262d 36 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Example: hiring problem

Input: list of candidates with suitability

cost per interview: . cost per hire:

Output: list of hiring decisions

Constraint: at any point, best candidate so far is

hired

Goal: minimise total cost of interviews + hires

Total cost is:

Interview cost is fixed, so focus on hiring cost

Worst case: every new candidate is hired:

(What kind of suitabilities would cause

this?)cmpt231.seanho.com/lec2  59a262d 37 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Analysis of hiring problem

Assume order of candidates is random

each of n! possible permutations is equally

likely

For each candidate i, find probability of being hired:

Most suitable candidate seen so far

 needs to be max of

if order is random, likelihood is 1/i

So

Now we can derive the expected hiring cost

cmpt231.seanho.com/lec2  59a262d 38 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Expected hiring cost

 (by linearity of E)

 (since is an indicator)

 (random order, see prev slide)

 (harmonic series)

⇒ much better than worst-case:

cmpt231.seanho.com/lec2  59a262d 39 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Randomised algorithms

Above analysis assumed input order was random

But we can’t always assume that!

So inject randomness into the problem:

Shu�le input before running algorithm

Use a pseudo-random number generator (PRNG)

Typically, returns a float in range [0,1)

Sequence is reproducible by setting seed

Or hardware RNG module (on motherboard, USB,

etc.)

shot noise, Zener diode noise, beam splitters,

etc.
cmpt231.seanho.com/lec2  59a262d 40 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Fisher-Yates shu�le

Idea by Fisher + Yates (1938)

Implementation via swaps by Durstenfeld

(1964)

Randomly permute input A[] in-place, in O(n) time

Use PRNG random(a,b): int between a and b

Correctness can be proved via loop invariant:

A�er i-th iteration, each possible permutation of

length i is in the subarray A[1 .. i] with

probability (n-i)!/n!

def shuffle(A, n):

 for i in 1 to n:

 swap(A[i], A[random(i, n)])

cmpt231.seanho.com/lec2  59a262d 41 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Outline for today

Divide and conquer (ch4)

Merge sort, recursion tree

Proof by induction

Maximum subarray

Matrix multiply, Strassen‘s method

Master method of solving recurrences

Probabilistic Analysis (ch5)

Hiring problem and analysis

Randomised algorithms and PRNGs

cmpt231.seanho.com/lec2  59a262d 42 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

cmpt231.seanho.com/lec2  59a262d 43 / 43

https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

