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Lecture 2: ch4-5

Divide and Conquer, Recurrences,
Randomised Algorithms
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James 1:2-4 (NASB)

Consider it all joy, my brethren,
when you encounter various trials,
knowing that the testing of your faith produces
endurance.

And let endurance have its perfect result,
so that you may be perfect and complete,
lacking in nothing.
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James 1:5-8 (NASB)

But if any of you lacks wisdom, let him ask of God,
who gives to all generously and without reproach,
and it will be given to him.

But he must ask in faith without any doubting,
for the one who doubts is like the surf of the sea,
driven and tossed by the wind.

For that man ought not to expect
that he will receive anything from the Lord,
being a double-minded man, unstable in all his ways.
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Outline for

e Divide and conquer (ch4) :
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen‘s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)
= Hiring problem and analysis
= Randomised algorithms and PRNGs
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Divide and conquer

e |nsertion sort was incremental:
m At each step, A[1..]-1] has been sorted, so
m Insert Alj] such thatA[l..|]is now sorted
e Divide and conquer strategy:
s Split task up into smaller chunks
= Small enough chunks can be solved directly
(base case)
s Combine results and return
e Implement via recursion or loops
m Usually, recursion is easier to code but slower
to run
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Merge sort

e Split array in half EC AR SOy, (5, 7))
= [fonly 1 elt, we're S el () 2 ]
done o, e oy
e Recurse to sort each nergetA P a1
half
e Merge sorted sub-
arrays
= Need to do this
efficiently
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Efficient merge in O(n)

e Assume subarrays are sorted:
m Alp..gland Alg+1..r],withp = g<r
e Make temporary copies of each sub-array
= Append an “oco“ marker item to end of each
copy
e Step through the sub-arrays, using two indices (i,}):
= Copy smaller element into main array
o and advance pointer in that sub-array
e Complexity: ©(n)

Maln : [ AI CI DI EI HI JI 14 4 14 14 4 ]
L: [ C, E, HL *K, P, R, inf ] || R: [ A, D, J, *L, N, T, inf ]
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Merge step: in pseudocode

def merge(A, p, q, r):
( nl/ n2 ) - ( q_p+1l r'q )

new arrays: L[ 1 .. n1+1 ], R[ 1 .. n2+1 ]

for 1 in 1 .. nl: L[ 1 ] = A[ p+i-1 ]
for j in 1 .. n2: R[ J ] = A[ g+] ]
( L[ n1+1 ], R[ n2+1 ] ) = ( inf, inf )

(1, 3)=(1, 1)
for k inp .. r:
if L[ 1 ] <=R[ J ]:
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Complexity of merge sort

e Recurrence relation: base case + inductive step
s Basecase:ifn=1,thenT(n)=06(1)
» Inductive step:ifn>1,then T(n) =2T(n/2) + O(n)
o Sort 2 halves of size n/2, then merge in
O(n)
e How to solve this recurrence?
= Function call diagram looks like binary tree
» Each level L has 2% recursive calls

= Each call performs 271 work in the merge step
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Recurrence tree

e Total work at each level is ©(n)
= Total number of levelsis lg(n)
s = Total complexity: ©(n lg(n))
e This is not a formal proof!
= A guess that we can prove by induction
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e Divide and conquer (ch4)
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen’s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)
= Hiring problem and analysis
= Randomised algorithms and PRNGs
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Mathematical induction

e Deduction: general principles = specific case
e Induction: representative case = general rule
e Proof by induction needs two axioms:
= Base case: starting point,e.g.,atn=1
= Inductive step: assuming the rule holds at n,
o prove it also holds at n+1
o equivalently, assume true V. m <n, and
prove for n
e This proves the rule for all (positive) n

cmpt231l.seanho.com/lec2 O 12 /43


https://github.com/cmpt231-16fa/lec2
http://localhost:9000/static/lec2.pdf

Example of inductive proof

n(n + 1)
2

e Recall Gauss‘ formula: ) j =
j=1

e We can prove it by induction:
e Prove basecase (n=1):1=(1)(1+1)/2
* Prove inductive step:

= Assume: ) j= n(n; L
j=1
n+1
= Prove: ) j= (n+ 1)2(n +2)
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Inductive step of Gauss’ formula
o %j: (i]) + (n+ 1)

- + (n + 1) (by inductive hypothesis)

° — + (n + 1)
n® +n -+ 2n + 2

2
n® + 3n + 2

2

. (27 1)2("’ +2) , proving the inductive step
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Inductive proof for merge sort

e Recurrence:T(n) = 2T(g) + O(n), with T(1) = O(1)

e Guess (from recursion tree): T(n) =0(n lg n)

e Prove basecase: T(1)=0(11g1)=06(1)

e Inductive hypothesis: assume d¢;, ¢z, ng: Vg <m <
N, cymlgm < T(m) < camlgm

e Inductive step: with the same constants ¢, ¢y, we
want to prove c;nlgn < T'(n) < conlgn
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Inductive step for merge sort

e Userecurrence and defn of ©(n): d ¢, cs:
2T(g) +csn < T'(n) < 2T(g) + cyn

e Apply inductive hypothesis with m =n/2:

n n n n
201 (3)18(5) +esm < T() < 200(5)18(35)
C1 5 g 5 +csn < T(n) < 2¢ 5 g 5 + ceqm

o = cin(lgn —1g2) + csn < T'(n) < cen(lgn —1g2) + c4n
e = cinlgn+ (c3 —c1)n < T(n) < conlgn + (¢4 — c2)n

e = cinlgn < T(n) < cenlgn

e Last step possible by choosinge; < ecs andcs > ¢4
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e Divide and conquer (ch4)
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen’s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)
= Hiring problem and analysis
= Randomised algorithms and PRNGs
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Maximum subarray

e Input: array A[1 .. n] of numbers (could be negative)
e Output:indices (i,]) to maximise sum(Ali .. |])
= e.g., input daily change in stock price:
o find optimal time to buy (i) and sell (j)
 Exhaustive check of all (i,)): ©(n?)

4 5 6 ] 8 9 10 11 12

100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97
13 -3 =25 20 —3 —16 —23 18 20 —7 12 —5 =22 15 —4 7
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Max subarray: algorithm

e Split array in half
e Recursively solve each half
= (what’s the base case?)
e Find the max subarray which spans the midpoint
= Do thisin O(n)
e Choose best out of 3 options (left, right, span) and
return

crosses the mic I|‘1 Hint

[J’”!‘l'l' . J']

T L_ 1] LI —

— mid +1 ™ — mid + 1
entirely in 4[! . mid] entirely in . [m d+1..high] Ali . ””f"r]

(a) (b)
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Span midpoint

e Find the maximum subarray that spans the midpoint
e Decrement i down from the midpoint to the low
end
= Maximise sum(A[i.. mid])
e Increment jup frommid+1 to the high end
= Maximise sum(A[mid+1..]])
e Total timeisonly linearinn

crosses the mulrunn[

Almid + 1. j]

mid high low i mid ——— ——, hieh

L L —

mid + | i S mid + 1
entirely in .-4[!::11 . mid] entirely in . [m id + 1..high] Ali .. mid]

(a) (b)
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Max subarray: complexity

def max_subarray(A, low, mid, high):
split_array()

# 0(1)
max_subarray( left_half )
# T(n/2)
max_subarray( right_half )
# T(n/2)
midpt_max_subarray()

# Theta(n)
return best_of_3()

# 0(1)
e Recurrence: T(n)=2T(n/2) + O(n)

= Base case: T(1)=0(1)
oo Sm0aMne 3 merge sort: solution is T(n) =0(n lg n)
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Programming Joke

e There’s always a way to shorten a program by one
line.
= But, there’s also always one more bug.
= = Byinduction, any program can be shortened
to a single line, which doesn’t work.
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e Divide and conquer (ch4)
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen’s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)
= Hiring problem and analysis
= Randomised algorithms and PRNGs
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Matrix multiply

e Input: two n x n matrices Ali,j| and B[',j]
e Output: C=A % B, where C[i, j] ZA[z k| B[k, j]

. o.g [Cu 012] _ [All A12] X [Bll 312]
Oy Co Ao Ago By1 By

o Simplest method:

def mult(A, B, n):
for 1 in 1 .. n:
for  in 1 .. n:
for k in 1 .. n:
C[i, j] += A[1, k] * B[k, J]
return C

Complexity? Can we do better?
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Divide-and-conquer mat mul

e Split matrices into 4 parts (assume n a power of 2)
e Recurse 8 times to get products of sub-matrices

e Add and combine info final result:
[Cn 012] _ [An A12] ) [Bn B12]
Ca1 COa Ay Ay Bs1 B
" C11 = Au1 * By + A2 * By
8 (o = Ay1 * Big + A1 * By, ...
e What’s the base case?
e How to generalise to n not a power of 27
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Complexity of divide-and-
conquer

e Split: O(1) by using indices rather than copying
matrices

e Recursion: 8 calls, each of time T(n/2)

e Combine: each entry in C needs one add: ©(n?)

e Sotherecurrenceis:T(n) = 8T(g) + 0(n%)

= Unfortunately, this resolves to ©(n?)
= No better than the simple solution
e What gets us is the 8 recursive calls
= Strassen‘s idea: save 1 recursive call
cmpr31seanho. by @@ending more on sums (which are only
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Strassen’s matrix multiply

e 10 sums of submatrices: S; = Bis — Bss,
So = A11 + Ag2, 83 = A + Az, Sy = By — Biy,
S5 = Ai1 + Ao, S¢ = B11 + Bag, S7 = A1z — Ag,
Sg = Ba1 + Bay, S9 = A1 — Agi, S10 = B + Bas.
e 7recursivecalls: P, = A;; x S1, P, = Sy % Boo,
P; = S3 x By, Py = Aoy % Sy, P = S5 xS,
Py = S7 % S5, P, = Sg x S1g.
e 4resultsviaaddition:Cy; = P; + Py — P, + P,

Cio =P +P,C =P3+P;,Co=F+P — P —F
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Complexity of Strassen’s method

e Even though more sums are done, still all © (n?)
= Doesn’t change total asymptotic complexity
= Might not be worth it for small n, though

e Recurrence:T(n) = 7T(g) + @(n2)

= Saved us 1 recursive call!
= Solution: T(n) = ©(n'®")
e Thisis an example of the master method
m For recurrences of form T(n)=a T(n/b )+ ©(f(n)
)
= Compare f(n) with n'°& ¢
= |s more work done in leaves of tree or roots?
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e Divide and conquer (ch4)
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen’s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)

= Hiring problem and analysis
= Randomised algorithms and PRNGs
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Master method for recurrences

e |[f T(n) hasthe form:a T(n/b) +f(n), witha,b>0
m Mergesort:a=2,b=2,f(n)=0(n)
o Case l:if f(n) € ©(n'® )
= Leaves/roots balanced: T'(n) = ©(n'*® ® logn)
o Case2:if f(n) € O(n'*®**) forsomez>0
= Leaves dominate: T'(n) = ©(n'*&*)
o Case 3:if f(n) € Q(n"® ") for some z>0, and if
af(%) < cf(n) forsomec<1andbign

= Roots dominate: T(n) = O(f(n))
= Polynomials f(n) = n* satisfy the regularity
condition
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Master method: merge sort

e Recurrence: T(n)=2T(n/2) + O(n):

"= a=2,b=2,f(n)=0(n)
* f(n) = ©(n) = O(n'*%?)

= So leaves and roots are balanced (case 1)
o Solutionis T(n) = ©(n'*%*logn) = O(nlogn)
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Master method: Strassen

e Recurrence: T(n)=7T(n/2) + ©(n"2)
m a=7,b=2,f(n)=0(n"2)
¢ f(n) = @(nz) _ O(n10g2 7—s)
m [g7=2.8,5s0,e.g.,z=0.4works
= So leaves dominate (case 2)
e Solutionis T(n) = ©(n' ") ~ ©(n*®)
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Gaps in master method

e Doesn’t cover all recurrences of form a T(n/b) + f(n)!
m e.g.,T(n)=2T(n/2) +nlogn
= Caselinlogn ¢ ©(n'°%?) = O(n)
m Case2:nlogn & O(nl_e), foranyz>0
= Case3:nlogn ¢ Q(n'*?),foranyz>0
o becauselogn ¢ Q(n°)Vz>0
e Need to use other methods to solve
= Some recurrences are just intractable
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Polylog extension

e Generalisation of master method
e Appliesfor f(n) € @(nl"gb(“) log" (n))
= (log to k power, not iterated log)
e Solution: T(n) = © (nlogb<a> logh+? (n))
= Regular master method is special case, k=0
e Previous example: T(n)=2T(n/2) +nlogn
= Solution: T(n) = ©(nlog” n)
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e Divide and conquer (ch4)
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen’s method
= Master method of solving recurrences

e Probabilistic Analysis (ch5)
= Hiring problem and analysis
= Randomised algorithms and PRNGs
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Probabilistic analysis

e Running time of insertion sort depended on input
m Best-case vs worst-case vs average-case
e Random variable X: takes values within a domain
= Domain!| couldbe [0,1],R=(-00,00), R,
(A, A-, B+, ...),{blue, red,
black}, etc.
e Distribution P(X): says which values are more likely
= Uniform: all values equally likely
= Normal (Gaussian) “bell curve” N(L., o)
e Expected value E(X): weighted average

cmpt231.seanho.co.m/l£({°)(|£ — LFQP(X) — ZP(X)
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Example: hiring problem

e Input: list of candidates with suitability {s;}>_,
m cost per interview: ¢;. cost per hire: ¢, > ¢
e Output: list of hiring decisions {X;} € {0,1}"
= Constraint: at any point, best candidate so far is

hired
» Goal: minimise total cost of interviews + hires

e Totalcostis:cin +c Y X;
1=1
» |nterview cost is fixed, so focus on hiring cost
e Worst case: every new candidateis hired: X; = 1V

» (What kind of suitabilities {s; } would cause
cmpt231.seanho.com/l$h ig;@) 37/43
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Analysis of hiring problem

e Assume order of candidates is random
m each of n! possible permutations is equally
likely
e Foreach candidate i, find probability of being hired:
= Most suitable candidate seen so far
= 5, needs to be max of {s;}._,

= if orderis random, likelihood is 1/i

" SOP(X;) = -

(/
e Now we can derive the expected hiring cost
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Expected hiring cost

n

* Elcz Y X;| =cn Y E[X;] (by linearity of E)
] i—1

¢ =cp ) % (random order, see prev slide)

e = c,(Inn + O(1)) (harmonic series)
e = much better than worst-case: c;,n
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Randomised algorithms

e Above analysis assumed input order was random
= But we can’t always assume that!

e Soinject randomness into the problem:
= Shuffle input before running algorithm

e Use a pseudo-random number generator (PRNG)
s Typically, returns a floatinrange [0, 1)

m Sequence is reproducible by setting seed
e Or hardware RNG module (on motherboard, USB,
etc.)
= shot noise, Zener diode noise, beam splitters,
etc.
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Fisher-Yates shuffle

e |dea by Fisher + Yates (1938)
= Implementation via swaps by Durstenfeld
(1964)
e Randomly permute input A[] in-place, in O(n) time

def shuffle(A, n):
for 1 in 1 to n:
swap( A[ i ], A[ random( i, n ) ] )

e Use PRNG random(a, b):intbetweenaandb
e Correctness can be proved via loop invariant:
n After i-th iteration, each possible permutation of
length iisinthe subarray A[ 1 ..1 ] with

cmpt231.seanho.com/lBrQ)Babi“ty (n_l)!/n! 41143
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e Divide and conquer (ch4) :
= Merge sort, recursion tree
= Proof by induction
= Maximum subarray
= Matrix multiply, Strassen‘s method
= Master method of solving recurrences
e Probabilistic Analysis (ch5)

= Hiring problem and analysis
= Randomised algorithms and PRNGs
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