
CMPT231
Lecture 4: ch8, 11

Linear-time Sort and Hash Tables

cmpt231.seanho.com/lec4 b4908de 1 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Psalm 90:10-12 (ESV)

The years of our life are seventy,

or even by reason of strength eighty;

yet their span is but toil and trouble;

they are soon gone, and we fly away.

Who considers the power of your anger,

and your wrath according to the fear of you?

So teach us to number our days

that we may get a heart of wisdom.

cmpt231.seanho.com/lec4 b4908de 2 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Outline for today
Proving all comparison sorts are Ω (n lg n)

Linear-time non-comparison sorts:

Counting sort

Radix sort and analysis

Bucket sort and probabilistic proof

Hash tables:

Collision handling by chaining

Hash functions and universal hashing

Collision handling by open addressing

cmpt231.seanho.com/lec4 b4908de 3 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Summary of sorting algorithms
Comparison sorts (ch2, 6, 7):

Insertion sort: Θ (n^2), easy to program, slow

Merge sort: Θ (n lg n), out-of-place copy (slow)

Heap sort: Θ (n lg n), in-place, max-heap

Quicksort: Θ (n^2) worst-case, Θ (n lg n) average

and small (fast) constant factors

Linear-time non-comparison sorts (ch8):

Counting sort: k distinct values: Θ (k)

Radix sort: d digits, k values: Θ (d(n+k))

Bucket sort: uniform distribution: Θ (n)

cmpt231.seanho.com/lec4 b4908de 4 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Comparison sorts are Ω (n lg n)
Decision tree model of computation:

Leaves are possible outputs

i.e., permutations of the input

Nodes are decision points

i.e., when comparisons are made

A path through the tree is one run of algorithm

Num leaves = num permutations = n!

Num comparisons = num nodes along path

So worst-case complexity = depth of tree:

= Ω (lg(num leaves)) = Ω (lg(n!))

= Ω (n lg n) (by Stirling) .
cmpt231.seanho.com/lec4 b4908de 5 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Outline for today
Proving all comparison sorts are Ω (n lg n)

Linear-time non-comparison sorts:

Counting sort

Radix sort and analysis

Bucket sort and probabilistic proof

Hash tables:

Collision handling by chaining

Hash functions and universal hashing

Collision handling by open addressing

cmpt231.seanho.com/lec4 b4908de 6 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Linear-time sorts
Ways to beat the Θ (n lg n) barrier

By using assumptions on input:

e.g., known range or distribution of values

e.g., numeric values we can perform arithmetic

on

But linear-time sorts not always worth it

For real-world arrays, Θ (n) and Θ (n lg n) are very

similar

Up to n = , lg n < 21, a smallish factor

For realistic n, a fast n lg n sort like Quicksort may

have smaller constants than a linear-time sort

But recursion is expensive (function calls)cmpt231.seanho.com/lec4 b4908de 7 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Hybrid algorithms
(#7.4-5) : QuickSort + Insertion sort

One pass with Quicksort, stop when length < c

Second pass with insertion sort

Items shi� at most c positions over

: Merge sort + Insertion sort

Default in Python, Java (<7), Android, etc

Take advantage of monotone runs in real data

Use run stack to track merges and exploit cache

locality

Merge with minimal extra memory or copying

Stable, best-case O(n), worst O(n lg n)

TimSort

cmpt231.seanho.com/lec4 b4908de 8 / 37

http://www.infopulse.com/blog/timsort-sorting-algorithm/
https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Counting sort
Assume: values are integers in {0, …, k}

Out-of-place sort:

Census array (size k) tallies a histogram

Items copied into output array

Stable: preserves order of duplicates

Complexity: Θ (n+k) (watch out if k gets too big!)

def counting_sort(A, n, k):

 out[1 .. n]

 # new output array

 census[0 .. k]

 # new array for census

 for j in 1 .. n:

 # take census

 census[A[j]]++

 for i in 1 .. k:

cumulative sums
cmpt231.seanho.com/lec4 b4908de 9 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Radix sort
(How IBM made its fortune! Punch cards, ca 1900)

Assume: values have at most d digits

Sort one digit at a time, least-significant first

MSD using (with call overhead)

Use a stable sort, e.g., counting sort (why?)

3 7 4 5

2 9 1 3

1 0 1 6

2 0 1 6

- 9 1 3

recursion

def radix_sort(A, n, d):

 for i in 1 .. d:

 stable_sort(A on digit i)

cmpt231.seanho.com/lec4 b4908de 10 / 37

https://en.wikipedia.org/wiki/Radix_sort#Recursion
https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Radix sort: complexity
Input: n items of d digits, each with k values (e.g.,

k=10)

e.g., using counting sort as the stable sort:

d iterations, each Θ (n+k)

So total complexity is Θ (d(n+k))

Digits need not be base k=10 !

Smaller base k ⇒ more iterations d

Fewer digits d ⇒ each counting sort Θ (n+k)

takes longer

cmpt231.seanho.com/lec4 b4908de 11 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Radix: choosing digit size
b-bit items can be split into r-bit digits:

Then digits, each with values

e.g., b = 32-bit items in r = 8-bit digits ⇒ d = 4, k

= 255

Choose r = lg n: then

e.g., to sort n = integers of b = 64-bits:

⇒ Use r = 16-bit digits

cmpt231.seanho.com/lec4 b4908de 12 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Outline for today
Proving all comparison sorts are Ω (n lg n)

Linear-time non-comparison sorts:

Counting sort

Radix sort and analysis

Bucket sort and probabilistic proof

Hash tables:

Collision handling by chaining

Hash functions and universal hashing

Collision handling by open addressing

cmpt231.seanho.com/lec4 b4908de 13 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Bucket sort

Assume: values uniformly distributed over [0,1)

(For range [a, b), use linear transform to [0, 1))

Divide *[0,1)* into *n* equal

buckets

Can use **array**, or

linked list, etc.

Distribute input into buckets:

Θ (n)

Sort each bucket (e.g.,

insertion sort)
cmpt231.seanho.com/lec4 b4908de 14 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Bucket sort: complexity
Let be number of items in the i-th bucket

Sorting a bucket with insertion sort takes

Intuition: uniform distribution ⇒

Expected time of bucket sort:

 (linearity of expectation)

 (by lemma)

 = O(n)

cmpt231.seanho.com/lec4 b4908de 15 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Lemma: = 2 - 1/n

Use indicator var: = 1 i� j-th item falls in i-th

bucket

Number of items in i-th bucket is

So

Think of these as entries in a j-k matrix

Consider diagonal and o�-diagonal terms

separately:cmpt231.seanho.com/lec4 b4908de 16 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Lemma, continued

For diagonal terms:

For o�-diagonal terms: items j ≠ k are independent,

so

cmpt231.seanho.com/lec4 b4908de 17 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Lemma, QED

So

This proves the lemma, proving bucket sort is Θ (n)

Assumptions: input values uniformly distributed

cmpt231.seanho.com/lec4 b4908de 18 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Outline for today
Proving all comparison sorts are Ω (n lg n)

Linear-time non-comparison sorts:

Counting sort

Radix sort and analysis

Bucket sort and probabilistic proof

Hash tables:

Collision handling by chaining

Hash functions and universal hashing

Collision handling by open addressing

cmpt231.seanho.com/lec4 b4908de 19 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Hash tables
Dictionary of key-value pairs, with this interface:

insert(T, k, x): add item x with key k

search(T, k): find an item with key k

delete(T, x): remove specific item x

Better than regular array (direct addressing) when:

Range of possible keys too huge to allocate

Actual keys are only sparse subset of possible

keys

e.g., only have items at keys 0, 2, 40201300:

Direct addressing would allocate 40,201,300

entries!
cmpt231.seanho.com/lec4 b4908de 20 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Hashing
Hash function (i.e., {0, …, m-1}) maps

from universe U of possible keys to a set of m buckets

Use h(k) as key instead of k

Hash collision: two keys, same bucket:

A good hash function should minimise collisions

Various collision handling methods

Let’s start with chaining via linked lists

Similar to bucket sort, but

Hash function maps unknown distribution of

keys in U to uniform distribution on buckets

cmpt231.seanho.com/lec4 b4908de 21 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Hash table operations
Assuming collision handling via linked lists:

insert(T, k, x):

insert x at head of list at bucket h(k)

O(1) complexity; assumes x not already in list

search(T, k):

linear search every item in bucket h(k)

, where = num items in bucket h(k)

delete(T, x):

if arg is a pointer directly to item, then O(1)

if arg is a key, then need to search for it first:

cmpt231.seanho.com/lec4 b4908de 22 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Load factor
Search e�iciency depends on how full buckets are:

Load factor α = n/m:

n = total number of items stored in hash table

m = number of buckets

α is average num items per bucket:

Unsuccessful search takes average Θ (1+α)

Computing the hash function takes Θ (1)

Linear search goes through entire bucket

Expected length of bucket’s linked list is α

Successful search is also Θ (1+α):
cmpt231.seanho.com/lec4 b4908de 23 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Hash table search: Θ (1+α)
Num items searched = position of x in linked list at

h(k)

= Number of collisions a�er x was inserted

Use an indicator: = 1 i�

P(i and j collide) = = 1/m

Expected num items searched:

 (number of collisions)

cmpt231.seanho.com/lec4 b4908de 24 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Successful search is Θ (1+α)

 (linearity of expectation)

 (probability of collision)

 (independent of i, j)

cmpt231.seanho.com/lec4 b4908de 25 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Outline for today
Proving all comparison sorts are Ω (n lg n)

Linear-time non-comparison sorts:

Counting sort

Radix sort and analysis

Bucket sort and probabilistic proof

Hash tables:

Collision handling by chaining

Hash functions and universal hashing

Collision handling by open addressing

cmpt231.seanho.com/lec4 b4908de 26 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Hash functions
Assume = {1, 2, 3, …}

i.e., keys can be converted to natural numbers

e.g., strings encoded using ASCII or UTF-8

Want h(k) uniformly distributed on

But distribution of keys k is unknown

Also, keys and might not be independent

Various hashing strategies:

Division hash

Multiplication hash

Universal hashing

cmpt231.seanho.com/lec4 b4908de 27 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Division hash
h(k) = k mod m

Simplest function mapping

Fast to compute: if (i.e., a power of 2),

this is just selecting the p least-significant bits

But: if k is a string using a radix- representation,

then permuting the string gives same hash (#11.3-3)

So try m prime and not too close to a power of 2

cmpt231.seanho.com/lec4 b4908de 28 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Multiplication hash
h(k) = floor(m(kA mod 1)) (choose constant 0 < A < 1)

Multiply k∗A → take fractional part

→ multiply by m → round down

Fast implementation using :

Let w be the native machine word size (num

bits)

Choose a w-bit integer s (0 < s <) and let A =

Multiply s∗k: product has 2w bits in two words

Select the p most-significant bits of lower word
cmpt231.seanho.com/lec4 b4908de 29 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Universal hashing
For any fixed choice of hash function, can always find

bad input resulting in lots of hash collisions

Why not randomly select from a pool H of hash

functions?

Want pool to have universal hash property:

For any two keys j ≠ k, at most |H|/m hash

functions in H cause a collision: h(j) = h(k)

i.e., P(h(j) = h(k)) ≤ 1/m

Then expected bucket size is still O(1+α)

So average complexity of search is still O(1)

cmpt231.seanho.com/lec4 b4908de 30 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Outline for today
Proving all comparison sorts are Ω (n lg n)

Linear-time non-comparison sorts:

Counting sort

Radix sort and analysis

Bucket sort and probabilistic proof

Hash tables:

Collision handling by chaining

Hash functions and universal hashing

Collision handling by open addressing

cmpt231.seanho.com/lec4 b4908de 31 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Open addressing
Another method of collision handling:

Store keys directly in table, no linked lists

Hash function

A probe sequence is h(k,0), h(k,1), h(k,2), …

To insert an item in table, first try h(k,0)

If already occupied, try next in sequence: h(k,1)

Will eventually try all slots (full coverage)

if probe sequence is a permutation of

Search is similar: check if found desired key

Hash table will still overflow if n > m

cmpt231.seanho.com/lec4 b4908de 32 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Probe sequencing
Choose a hash function that gives us uniform

hashing:

Each of the m! permutations of is equally

likely to be the probe sequence for a given key

Linear probing: h(k,i) = h(k) + i

Try h(k), then h(k)+1, etc. (modulo m)

But: long runs get longer (more likely to hit)

Quadratic probing: h(k,i) =

Must choose to ensure full coverage

But: collision on initial h(k) ⇒ full sequence

collision
cmpt231.seanho.com/lec4 b4908de 33 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Double hashing
Use two hash functions: h(k, i) =

Try first, then use to jump around

For full coverage, ensure m and are relatively

prime

i.e., no common factors other than 1

e.g., let m = and ensure always odd

e.g., let m be prime, and ensure 1 < < m

Each combination of and yields a di�erent

probe sequence:

Total number of sequences is

cmpt231.seanho.com/lec4 b4908de 34 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Outline for today
Proving all comparison sorts are Ω (n lg n)

Linear-time non-comparison sorts:

Counting sort

Radix sort and analysis

Bucket sort and probabilistic proof

Hash tables:

Collision handling by chaining

Hash functions and universal hashing

Collision handling by open addressing

cmpt231.seanho.com/lec4 b4908de 35 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

Visualisations of sorting
 (YouTube)

: interactive demos:

sorting, binary heaps, hash tables, etc.

Toptal:

Mike Bostock’s “Visualizing Algorithms”:

,

The Sound of Sorting playlist

Visualgo

Comparison of sort algorithms

Fisher-Yates shu�le sorting

cmpt231.seanho.com/lec4 b4908de 36 / 37

http://panthema.net/2013/sound-of-sorting/
https://www.youtube.com/watch?list=PLZh3kxyHrVp_AcOanN_jpuQbcMVdXbqei
http://visualgo.net/
https://www.toptal.com/developers/sorting-algorithms
https://bost.ocks.org/mike/algorithms/#shuffling
https://bost.ocks.org/mike/algorithms/#sorting
https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

cmpt231.seanho.com/lec4 b4908de 37 / 37

https://github.com/cmpt231-16fa/lec4
http://localhost:9000/static/lec4.pdf

